Плотность вероятности непрерывной случайной величины, ее определение, свойства и график. Непрерывная случайная величина, функция распределения и плотность вероятности Случайная величина х имеет плотность распределения вероятностей

Непрерывные случайные величины характеризуются тем, что их значения могут сколь угодно мало отличаться друг от друга.

Вероятность события X < х (где X – значение , а х – произвольно задаваемое значение), рассматриваемая как функция от х , называется функцией распределения вероятностей :

F (x ) = Р (Х <х ).

Производная от функции распределения вероятностей называется функцией плотности распределения вероятностей или плотностью вероятности :

f (x ) = F" (x ).

Функция распределения вероятностей выражается через плотность вероятности в виде интеграла:

х 1 , х 2) равна приращению функции распределения вероятностей на этом интервале:

P (x 1 <X <x 2) = F (x 2) – F (x 1). (4)

3.1. Случайная величина X задана функцией распределения вероятностей:

Найти плотность вероятности f (x ) и вероятность попадания случайной величины X в интервалы (1; 2,5), (2,5; 3,5).

Решение . Плотность вероятности находим по формуле f (x ) = F" (x ):

Вероятности попадания случайной величины X в интервалы вычисляем по формуле (3.1):

Р (1 < X < 2,5) = F (2,5) – F (1) = 0,5 2 – 0 = 0,25;

Р (2,5 < X < 3,5) = F (3,5) – F (2,5) = 1 – 0,25= 0,75.

3.2. Плотность вероятности непрерывной случайной величины X:

Найти функцию распределения F (х ) и построить ее график.

Решение.

если ,

Если х > 2.

График функции представлен на рис. 3.1.

Рис. 3.1

3.3. Плотность вероятности непрерывной случайной величины X задана в виде

Найти параметр С.

Решение . На основании равенства

Математическое ожидание и дисперсия. Мода и медиана

Средним значением или математическим ожиданием непрерывной случайной величины X

М (Х ) = М х = ,

где f (x ) – плотность вероятности.

Дисперсией непрерывной случайной величины X называется значение интеграла

D (X ) = D x = .

Для определения дисперсии может быть также использована формула

D x = .

Модой М 0 (Х X называется такое значение этой величины, плотность вероятности которого максимальна.

Медианой Мe (Х ) непрерывной случайной величины X называется такое ее значение, при котором выполняется равенство

Р (Х < Me ) = Р (Х > Me ).

3.4. Случайная величина X f (x ) = х /2 в интервале (0; 2), вне этого интервала f (x ) = 0. Найти математическое ожидание величины X .

Решение . На основании формулы

3.5. Случайная величина X задана плотностью вероятности f (x ) = x /8 в интервале (0; 4). Вне этого интервала f (x ) = 0. Найти математическое ожидание.



3.6. Случайная величина X задана плотностью вероятности f (x ) = при . Найти математическое ожидание.

3.7. Случайная величина X задана плотностью вероятности f (x ) = С (х 2 + 2х ) в интервале (0; 1). Вне этого интервала f (x ) = 0. Найти параметр С .

Решение . Так как

Откуда С = .

Равномерное распределение

Непрерывная случайная величина называется равномерно распределенной на отрезке [а , b ], если ее плотность вероятности имеет вид:

Математическое ожидание и дисперсия равномерно распределенной случайной величины определяются выражениями

3.8. Случайная величина X распределена равномерно на отрезке . Найти функцию распределения F (x ), математическое ожидание, дисперсию и среднее квадратичное отклонение величины.

Решение . Плотность вероятности для величины X имеет вид:

Следовательно, функция распределения, вычисляемая по формуле:

,

запишется следующим образом:

Математическое ожидание будет равно М х = (1 + 6)/2 = 3,5. Находим дисперсию и среднее квадратичное отклонение:

D x = (6 – 1) 2 /12 = 25/12, .

Нормальное распределение

Случайная величина X распределена по нормальному закону, если ее функция плотности распределения вероятностей имеет вид:

где М х – математическое ожидание;

– среднее квадратичное отклонение.

Вероятность попадания случайной величины в интервал (а , b ) находится по формуле

Р (а < X < b ) = Ф – Ф = Ф(z 2) – Ф(z 1), (5)

где Ф(z ) = – функция Лапласа.

Значения функции Лапласа для различных значений z приведены в Приложении 2.

3.9. Математическое ожидание нормально распределенной случайной величины X равно М х = 5, дисперсия равна D x = 9. Написать выражение для плотности вероятности.

3.10. Математическое ожидание и среднее квадратичное отклонение нормально распределенной случайной величины X соответственно равны 12 и 2. Найти вероятность того, что случайная величина примет значение, заключенное в интервале (14; 16).



Решение . Используем формулу (21.2), учитывая, что М х = 12, = 2:

Р (14 < X < 16) = Ф((16 – 12)/2) – Ф(14 – 12)/2) = Ф(2) – Ф(1).

По таблице значений функции Лапласа находим Ф(1) = 0,3413, Ф(2) = 0,4772. После подстановки получаем значение искомой вероятности:

Р (14 <Х < 16) = 0,1359.

3.11. Имеется случайная величина X , распределенная по нормальному закону, математическое ожидание которой равно 20, среднее квадратичное отклонение равно 3. Найти симметричный относительно математического ожидания интервал, в который с вероятностью р = 0,9972 попадет случайная величина.

Решение . Так как Р (х 1 < Х < х 2) = р = 2Ф((х 2 – М х )/ ), то Ф(z ) = р /2 = 0,4986. По таблице функции Лапласа находим значение z , соответствующее полученному значению функции Ф(z ) = 0,4986: z = 2,98. Учитывая то, что z = (х 2 – М х )/ , определяем = х 2 – М х = z = 3 · 2,98 = 8,94. Искомый интервал будет иметь вид (11,06; 28,94).

Учтем, что f (x ) = F" (x ). Тогда получим:

Подставим в выражение для математического ожидания

.

Интегрируя по частям, получаем М х = 1/ , или М х = 1/0,1.

Для определения дисперсии проинтегрируем по частям первое слагаемое. В результате получим:

.

Учтем найденное выражение для М х . Откуда

.

В данном случае М х = 10, D x = 100.

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

4. Плотность распределения вероятностей непрерывной случайной величины

Непрерывную случайную величину можно задать с помощью функции распределения F (x ) . Этот способ задания не является единственным. Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (иногда её называют дифференциальной функцией).

Определение4.1: Плотностью распределения непрерывной случайной величины Х называют функцию f (x ) - первую производную от функции распределения F (x ) :

f ( x ) = F "( x ) .

Из этого определения следует, что функция распределения является первообразной для плотности распределения. Заметим, что для описания распределения вероятностей дискретной случайной величины плотность распределения неприменима.

Вероятность попадания непрерывной случайной величины в заданный интервал

Зная плотность распределения, можно вычислить вероятность того, что непрерывная случайная величина примет значение, принадлежащее заданному интервалу.

Теорема: Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащие интервалу (a , b ), равна определённому интегралу от плотности распределения, взятому в пределах от a до b :

Доказательство: Используем соотношение

P (a X b ) = F (b ) – F (a ).

По формуле Ньютона-Лейбница,

Таким образом,

.

Так как P (a X b )= P (a X b ) , то окончательно получим

.

Геометрически полученный результат можно истолковать так: вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (a , b ), равна площади криволинейной трапеции, ограниченной осью Ox , кривой распределения f (x ) и прямыми x = a и x = b .

Замечание: В частности, если f (x ) – чётная функция и концы интервала симметричны относительно начала координат, то

.

Пример. Задана плотность вероятности случайной величины Х

Найти вероятность того, что в результате испытания Х примет значение, принадлежащие интервалу (0,5; 1).

Решение: Искомая вероятность

.

Нахождение функции распределения по известной плотности распределения

Зная плотность распределения f (x ) , можно найти функцию распределения F (x ) по формуле

.

Действительно, F (x ) = P (X x ) = P (-∞ X x ) .

Следовательно,

.

Таким образом, зная плотность распределения, можно найти функцию распределения. Разумеется, по известной функции распределения можно найти плотность распределения , а именно:

f (x ) = F "(x ).

Пример. Найти функцию распределения по данной плотности распределения:

Решение: Воспользуемся формулой

Если x a , то f (x ) = 0 , следовательно, F (x ) = 0 . Если a , то f(x) = 1/(b-a) ,

следовательно,

.

Если x > b , то

.

Итак, искомая функция распределения

Замечание: Получили функцию распределения равномерно распределенной случайной величины (см. равномерное распределение).

Свойства плотности распределения

Свойство 1: Плотность распределения - неотрицательная функция:

f ( x ) ≥ 0 .

Свойство 2: Несобственный интеграл от плотности распределения в пределах от -∞ до ∞ равен единице:

.

Замечание: График плотности распределения называют кривой распределения .

Замечание: Плотность распределения непрерывной случайной величины также называют законом распределения.

Пример. Плотность распределения случайной величины имеет следующий вид:

Найти постоянный параметр a .

Решение: Плотность распределения должна удовлетворять условию , поэтому потребуем, чтобы выполнялось равенство

.

Отсюда
. Найдём неопределённый интеграл:

.

Вычислим несобственный интеграл:

Таким образом, искомый параметр

.

Вероятный смысл плотности распределения

Пусть F (x ) – функция распределения непрерывной случайной величины X . По определению плотности распределения, f (x ) = F "(x ) , или

.

Разность F (x +∆х) - F (x ) определяет вероятность того, что X примет значение, принадлежащее интервалу (x , x +∆х) . Таким образом, предел отношения вероятности того, что непрерывная случайная величина примет значение, принадлежащее интервалу (x , x +∆х) , к длине этого интервала (при ∆х→0 ) равен значению плотности распределения в точке х .

Итак, функция f (x ) определяет плотность распределения вероятности для каждой точки х . Из дифференциального исчисления известно,что приращение функции приближенно равно дифференциалу функции, т.е.

Так как F "(x ) = f (x ) и dx = ∆ x , то F (x +∆ x ) - F (x ) ≈ f (x )∆ x .

Вероятностный смысл этого равенства таков: вероятность того, что случайная величина примет значение принадлежащее интервалу (x , x +∆ x ) ,приближенно равна произведению плотности вероятности в точке х на длину интервала ∆х .

Геометрически этот результат можно истолковать так : вероятность того, что случайная величина примет значение принадлежащее интервалу (x , x +∆ x ) ,приближенно равна площади прямоугольника с основанием ∆х и высотой f (x ).

5. Типовые распределения дискретных случайных величин

5.1. Распределение Бернулли

Определение5.1: Случайная величина X , принимающая два значения 1 и 0 с вероятностями (“успеха”) p и (“неуспеха”) q , называется Бернуллиевской :

, где k =0,1.

5.2. Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может появиться или не появиться. Вероятность наступления события во всех испытаниях постоянна и равна p (следовательно, вероятность непоявления q = 1 - p ).

Рассмотрим случайную величину X – число появлений события A в этих испытаниях. Случайная величина X принимает значения 0,1,2,… n с вероятностями, вычисленными по формуле Бернулли: , где k = 0,1,2,… n .

Определение5.2: Биномиальным называют раcпределение вероятностей, определяемое формулой Бернулли.

Пример. По мишени производится три выстрела, причем вероятность попадания при каждом выстреле равна 0,8. Рассматривается случайная величина X – число попаданий в мишень. Найти ее ряд распределения.

Решение: Случайная величина X принимает значения 0,1,2,3 с вероятностями, вычисленными по формуле Бернулли, где n = 3, p = 0,8 (вероятность попадания), q = 1 - 0,8 = = 0,2 (вероятность непопадания).

Таким образом, ряд распределения имеет следующий вид:

Пользоваться формулой Бернулли при больших значениях n достаточно трудно, поэтому для подсчета соответствующих вероятностей используют локальную теорему Лапласа, которая позволяет приближенно найти вероятность появления события ровно k раз в n испытаниях, если число испытаний достаточно велико.

Локальная теорема Лапласа : Если вероятность p появления события A
того, что событие A появится в n испытаниях ровно k раз, приближенно равна (тем точнее, чем больше n ) значению функции
, где
,
.

Замечание1: Таблицы, в которых помещены значения функции
, даны в приложении 1, причем
. Функция является плотностью стандартного нормального распределения (смотри нормальное распределение).

Пример: Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Решение: По условию n = 400, k = 80, p = 0,2 , q = 0,8 . Вычислим определяемое данными задачи значение x :
. По таблице приложения 1 находим
. Тогда искомая вероятность будет:

Если нужно вычислить вероятность того, что событие A появится в n испытаниях не менее k 1 раз и не более k 2 раз, то нужно использовать интегральную теорему Лапласа:

Интегральная теорема Лапласа : Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность
того, что событие A появится в n испытаниях от k 1 до k 2 раз, приближенно равна определенному интегралу

, где
и
.

Другими словами, вероятность того, что событие A появится в n испытаниях от k 1 до k 2 раз, приближенно равна

где
,
и .

Замечание2: Функцию
называют функцией Лапласа (смотри нормальное распределение). Таблицы, в которых помещены значения функции , даны в приложении 2, причем
.

Пример: Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей, если вероятность того, что деталь не прошла проверку ОТК, равна 0,2.

Решение: По условию n = 400, p = 0,2 , q = 0,8, k 1 = 70, k 2 = 100 . Вычислим нижний и верхний пределы интегрирования:

;
.

Таким образом, имеем:

По таблице приложения 2 находим, что
и
. Тогда искомая вероятность равна:

Замечание3: В сериях независимых испытаний (когда n велико, p мало) для вычисления вероятности наступления события ровно k раз используют формулу Пуассона (смотри распределение Пуассона).

5.3. Распределение Пуассона

Определение5.3: Дискретную случайную величину называют Пуассоновской, если ее закон распределения имеет следующий вид:

, где
и
(постоянное значение).

Примеры Пуассоновских случайных величин:

    Число вызовов на автоматическую станцию за промежуток времени T .

    Число частиц распада некоторого радиоактивного вещества за промежуток времени T .

    Число телевизоров, которые поступают в мастерскую за промежуток времени T в большом городе.

    Число автомобилей, которые поступят к стоп-линии перекрестка в большом городе.

Замечание1: Специальные таблицы для вычисления данных вероятностей приведены в приложении 3.

Замечание2: В сериях независимых испытаний (когда n велико, p мало) для вычисления вероятности наступления события ровно k раз используют формулу Пуассона:
, где
,
то есть среднее число появлений событий остается постоянным.

Замечание3: Если есть случайная величина, которая распределена по закону Пуассона, то обязательно есть случайная величина, которая распределена по показательному закону и, наоборот (см. Показательное распределение).

Пример. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002 . Найти вероятность, что на базу прибудут ровно три негодных изделия.

Решение: По условию n = 5000, p = 0,0002, k = 3. Найдем λ: λ = np = 5000·0,0002 = 1 .

По формуле Пуассона искомая вероятность равна:

, где случайная величина X – число негодных изделий.

5.4. Геометрическое распределение

Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна p (0 p

q = 1 - p . Испытания заканчиваются, как только появится событие А . Таким образом, если событие А появилось в k -м испытании, то в предшествующих k – 1 испытаниях оно не появлялось.

Обозначим через Х дискретную случайную величину – число испытаний, которые нужно провести до первого появления события А . Очевидно, возможными значениями Х являются натуральные числа х 1 = 1, х 2 = 2, …

Пусть в первых k -1 испытаниях событие А не наступило, а в k -м испытании появилось. Вероятность этого “сложного события”, по теореме умножения вероятностей независимых событий, P (X = k ) = q k -1 p .

Определение5.4: Дискретная случайная величина имеет геометрическое распределение , если ее закон распределения имеет следующий вид:

P ( X = k ) = q k -1 p , где
.

Замечание1: Полагая k = 1,2,… , получим геометрическую прогрессию с первым членом p и знаменателем q (0q . По этой причине распределение называют геометрическим.

Замечание2: Ряд
сходится и сумма его равна единице. Действительно сумма ряда равна
.

Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0,6 . Найти вероятность того, что попадание произойдет при третьем выстреле.

Решение: По условию p = 0,6, q = 1 – 0,6 = 0,4, k = 3. Искомая вероятность равна:

P (X = 3) = 0,4 2 ·0,6 = 0,096.

5.5. Гипергеометрическое распределение

Рассмотрим следующую задачу. Пусть в партии из N изделий имеется M стандартных (M N ). Из партии случайно отбирают n изделий (каждое изделие может быть извлечено с одинаковой вероятностью), причем отобранное изделие перед отбором следующего не возвращается в партию (поэтому формула Бернулли здесь не применима).

Обозначим через X случайную величину – число m стандартных изделий среди n отобранных. Тогда возможными значениями X будут 0, 1, 2,…, min ; обозначим их и, ... по значениям независимой переменной (Fonds) воспользуемся кнопкой (раздел ...

  • Учебно-методический комплекс по дисциплине «Общий психологический практикум»

    Учебно-методический комплекс

    ... методические указания по выполнению практических работ 5.1 Методические рекомендации по выполнению учебных проектов 5.2 Методические рекомендации по ... чувствительности), одномерного и многомерного... случайного компонента в величине ... с разделом «Представление...

  • Учебно-методический комплекс по дисциплине физика (название)

    Учебно-методический комплекс

    ... разделов в учебниках. Решение задач по каждой теме. Проработка методических указаний к лабораторным работам по ... случайной и приборной погрешности измерений 1.8 Тематика контрольных работ и методические указания по ... Частица в одномерной потенциальной яме. ...

  • Методические указания к лабораторным работам по дисциплине информатика

    Методические указания

    ... Методические указания к ЛАБОРАТОРНым РАБОТАМ по ... величиной , а наибольшей суммой величин ... массива случайными числами... 3.0 4.0 3.0 -2.5 14.3 16.2 18.0 1.0 а) одномерный массив б) двумерный массив Рис. 2– Файлы... описываются в разделе реализации после...

  • Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают .Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа, т. е.. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

    Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси(рис. 6), которая в результате испытания может занять то или иное положение на этой оси, то функция распределенияесть вероятность того, что случайная точкав результате испытания попадет левее точки.

    Для дискретной случайной величины , которая может принимать значения,, … ,, функция распределения имеет вид

    ,

    где неравенство под знаком суммы означает, что суммирование распространяется на все те значения, которые по своей величине меньше. Из этой формулы следует, что функция распределения дискретной случайной величиныразрывна и возрастает скачками при переходе через точки,, … ,, причем величина скачка равна вероятности соответствующего значения (рис. 7). Сумма всех скачков функции распределения равна единице.

    Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

    Рис. 7. Рис. 8.

    Рассмотрим общие свойства функций распределения.

    Свойство 1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей:

    Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что.

    Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

    Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

    Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. при .

    Свойство 4. На минус бесконечности функция распределения рана нулю, а на плюс бесконечности функция распределения рана единице, т. е. ,.

    Пример 1. Функция распределения непрерывной случайной величины задана выражением

    Найти коэффициент и построить график. Определить вероятность того, что случайная величинав результате опыта примет значение на интервале.

    Решение. Так как функция распределения непрерывной случайной величины непрерывна, то приполучим:. Отсюда. График функцииизображен на рис. 9.

    Исходя из второго свойства функции распределения, имеем:

    .

    4. Плотность распределения вероятности и ее свойства.

    Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности или дифференциальной функцией распределения случайной величины.

    Плотность распределения равна производной от функции распределения, т. е.

    .

    Смысл плотности распределения состоит в том, что она указывает на то, как часто появляется случайная величинав некоторой окрестности точкипри повторении опытов. Кривая, изображающая плотность распределенияслучайной величины, называетсякривой распределения .

    Рассмотрим свойства плотности распределения.

    Свойство 1. Плотность распределения неотрицательна, т. е.

    Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до, т. е.

    .

    Свойство 3. Вероятность попадания непрерывной случайной величины на участокравна интегралу от плотности распределения, взятому по этому участку, т. е.

    .

    Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

    .

    Пример 2. Случайная величина подчинена закону распределения с плотностью

    Определить коэффициент ; построить график плотности распределения; найти вероятность попадания случайной величины на участок отдо; определить функцию распределения и построить ее график.

    Решение. Площадь, ограниченная кривой распределения, численно равна

    .

    Учитывая свойство 4 плотности распределения, находим: . Следовательно, плотность распределения может быть выражена так:

    График плотности распределения изображен на рис. 10. По свойству 3 имеем

    .

    Для определения функции распределения воспользуемся свойством 2:

    .

    Таким образом, имеем

    График функции распределения изображен на рис. 11.

    Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

    Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

    Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

    Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

    Функция распределения непрерывной случайной величины и плотность вероятности

    В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

    Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

    Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

    Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

    .

    Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

    вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

    .

    При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

    .

    График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

    Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

    Свойства функции плотности вероятности непрерывной случайной величины

    1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

    2. Функция плотности вероятности не может принимать отрицательные значения:

    а за пределами существования распределения её значение равно нулю

    Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

    Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

    Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

    Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

    Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

    Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

    Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

    График функции F (x ) - парабола:

    График функции f (x ) - прямая:

    Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

    Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

    Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

    Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

    Таким образом, функция плотности вероятности непрерывной случайной величины:

    Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

    .

    x > 10 , то F (x ) = 1 .

    Таким образом, полная запись функции распределения вероятностей:

    График функции f (x ) :

    График функции F (x ) :

    Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

    Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

    Решение. По условию приходим к равенству

    Следовательно, , откуда . Итак,

    .

    Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

    Теперь получим функцию распределения данной случайной величины:

    Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

    Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

    Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

    Генеральная совокупность и случайная величина

    Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

    Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

    Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

    В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

    Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

    Функция распределения

    Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

    F(x) = P(X

    Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

    Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

    В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

    Приведем некоторые свойства Функции распределения:

    • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
    • Функция распределения – неубывающая функция;
    • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

      Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

      Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

      Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

      Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

      Вычисление плотности вероятности с использованием функций MS EXCEL

      Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

      Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

      Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

      Вычисление вероятностей с использованием функций MS EXCEL

      1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

      НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
      Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

      2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

      В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

      3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

      Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье функции распределения найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

      В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

      Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

      Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

      В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

      Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

       

      Возможно, будет полезно почитать: