Свойства теплового движения молекул газа. Характер теплового движения в кристаллах

Атомы и молекулы, из которых состоят различные вещества, находятся в состоянии непрерывного теплового движения.

Первой особенностью теплового движения является его хаотичность; ни одно направление движения молекул не выделяется среди других направлений. Поясним это: если проследить за движением одной молекулы, то с течением времени вследствие столкновений с другими молекулами величина скорости и направление движения этой молекулы изменяются совершенно беспорядочно; далее, если в какой-нибудь момент времени зафиксировать скорости движения всех молекул, то по направлению эти скорости оказываются равномерно разбросанными в пространстве, а по величине - имеют самые разнообразные значения.

Второй особенностью теплового движения является существование обмена энергией между молекулами, а также между различными видами движения; энергия поступательного движения молекул может переходить в энергию их вращательного или колебательного движения и обратно.

Обмен энергией между молекулами, а также между различными видами их теплового движения происходит благодаря взаимодействию молекул (столкновениям между ними). На больших расстояниях силы взаимодействия между молекулами очень малы и ими можно пренебрегать; на малых расстояниях эти силы оказывают заметное действие. В газах молекулы большую часть времени пребывают на сравнительно больших расстояниях друг от друга; лишь в течение весьма малых промежутков времени, оказавшись достаточно близко друг к другу, они взаимодействуют между собой, изменяя скорости своих движений и обмениваясь энергиями. Такие кратковременные взаимодействия молекул называются столкновениями. Различают два вида столкновений между молекулами:

1) столкновения, или удары, первого рода, в результате которых изменяются только скорости и кинетические энергии соударяющихся частиц; состав или структура самих молекул не испытывают никаких изменений;

2) столкновения, или удары, второго рода, в результате которых происходят изменения внутри молекул, например изменяется их состав или относительное расположение атомов внутри этих молекул. При этих столкновениях часть кинетической энергии молекул затрачивается на совершение работы против сил, действующих внутри молекул. В некоторых случаях, наоборот, может выделиться некоторое количество энергии за счет уменьшения внутренней потенциальной энергии молекул.

В дальнейшем мы будем иметь в виду только столкновения первого рода, происходящие между молекулами газов. Обмен энергиями при тепловых движениях в твердых и жидких телах является более сложным процессом и рассматривается в специальных разделах физики. Столкновения второго рода используются для объяснения электропроводности газов и жидкостей, а также теплового излучения тел.

Для описания каждого вида теплового движения молекул (поступательного, вращательного или колебательного) необходимо задать ряд величин. Например, для поступательного движения молекулы необходимо знать величину и направление ее скорости. Для этой цели достаточно указать три величины: значение скорости и два угла и между направлением скорости и координатными плоскостями или же три проекции скорости на координатные оси: (рис. 11.1, а). Заметим, что эти три величины независимы: при данном углы и могут иметь любые значения и, наоборот, при заданном, например, угле значения и могут быть любыми. Точно так же задание определенного значения не накладывает никаких ограничений на значения наоборот. Таким образом, для описания поступательного движения молекулы в пространстве необходимо задать три независимые друг от друга величины: и или Энергия, поступательного движения молекулы будет состоять из трех независимых компонент:

Для описания вращательного движения молекулы вокруг своей оси необходимо указать величину и направление угловой скорости вращения , т. е. опять-таки три независимые друг от друга величины: и в или (рис. II. 1, б). Энергия вращательного движения молекулы также будет состоять из трех независимых компонент:

где моменты инерции молекулы относительно трех взаимно перпендикулярных координатных осей. У одноатомной молекулы все эти моменты инерции очень малы, поэтому энергией ее вращательного движения пренебрегают. У двухатомной молекулы (рис. II.1, в) пренебрегают энергией вращательного движения относительно оси, проходящей через центры атомов, поэтому, например,

Для описания колебательного движения атомов в молекуле необходимо сначала разделить это движение на простые колебания, происходящие вдоль определенных направлений. Сложное колебание удобно разложить на простые прямолинейные колебания, происходящие по трем взаимно перпендикулярным направлениям. Эти колебания независимы друг от друга, т. е. частоте и амплитуде колебаний в одном из этих направлений могут соответствовать любая частота и амплитуда колебаний в других направлениях. Если каждое из этих прямолинейных колебаний гармоническое, то его можно описать при помощи формулы

Таким образом, для описания отдельного прямолинейного колебания атомов необходимо задать две величины: частоту колебания со и амплитуду колебания Эти две величины также независимы друг от друга: при данной частоте амплитуда колебания не связывается никакими условиями, и наоборот. Следовательно, для описания сложного колебательного движения молекулы вокруг точки (т. е. своего положения равновесия) необходимо задать шесть независимых друг от друга величин: три частоты и амплитуды колебании по трем взаимно перпендикулярным направлениям.

Независимые друг от друга величины, определяющие состояние данной физической системы, называются степенями свободы этой системы. При изучении теплового движения в телах (для расчета энергии этого движения) определяют число степеней свободы каждой молекулы этого тела. При этом подсчитываются только те степени свободы, между которыми происходит обмен энергиями. Молекула одноатомного газа обладает тремя степенями свободы поступательного движения; двухатомная молекула имеет три степени свободы поступательного и две степени свободы вращательного движения (третья степень свободы, соответствующая вращению вокруг оси, проходящей через центры атомов, не учитывается). Молекулы, содержащие три

атома и больше, обладают тремя поступательными и тремя вращательными степенями свободы. Если в обмене энергиями участвует и колебательное движение, то на каждое независимое прямолинейное колебание добавляют две степени свободы.

Рассматривая раздельно поступательное, вращательное и колебательное движения молекул, можно найти среднюю энергию, которая приходится на каждую степень свободы этих видов движения. Рассмотрим сначала поступательное движение молекул: допустим, молекула обладает кинетической энергией масса молекулы). Сумма есть энергия поступательного движения всех молекул. Разделив на степеней свободы, получим среднюю энергию, приходящуюся на одну степень свободы поступательного движения молекул:

Так же можно рассчитать средние энергии, приходящиеся на одну степень свободы вращательного евращ и колебательного еколеб движений. Если каждая молекула обладает степенями свободы поступательного, степенями свободы вращательного и степенями свободы колебательного движений, то полная энергия теплового движения всех молекул будет равна

Тепловое движение молекул.
Наиболее убедительный факт – броуновское движение молекул. Броуновское движение молекул подтверждает хаотический характер теплового движения и зависимость интенсивности этого движения от температуры. Впервые беспорядочное движение мелких твердых частиц, наблюдал английский ботаник Р.Броун в 1827 году, рассматривая взвешенные в воде твердые частички – споры плауна. Обратить внимание учащихся на то, что движение спор происходит по прямым, составляющим ломанную линию. С тех пор, движение частиц в жидкости или газе называется броуновским. Провести стандартный демонстрационный эксперимент "Наблюдение броуновского движения", используя круглую коробочку с двумя стеклами.

Изменяя температуру жидкости или газа, например, увеличивая ее, можно увеличить интенсивность броуновского движения. Броуновская частица движется под действием ударов молекул. Объяснение броуновского движения частицы состоит в том, что удары молекул жидкости или газа о частицу не компенсируют друг друга. Количественная теория броуновского движения была разработана Альбертом Эйнштейном в 1905 году. Эйнштейн показал, что средний квадрат смещения броуновской частицы пропорционален температуре среды, зависит от формы и размеров частицы и прямо пропорционален времени наблюдения. Французский физик Ж.Перрен провел серию опытов, которые количественно подтвердили теорию броуновского движения.

Расчет числа ударов о стенку сосуда. Рассмотрим идеальный одноатомный газ, находящийся в равновесии в сосуде объемом V. Выделим молекулы, имеющие скорость от v до v + dv. Тогда число молекул, движущихся в направлении углов  и с этими скоростями будет равно:

dN v,, = dN v ·d/4. (14.8)

Выделим элементарную поверхность площадью dП., которую примем за часть стенки сосуда. За единицу времени до этой площади дойдут молекулы, заключенные в косом цилиндре с основанием dП и высотой v·cos  (см. рис. 14.3). Число пересечений выбранными нами молекулами выделенной поверхности (число ударов о стенку) в единицу времени d v,, будет равно произведению концентрации молекул на объем этого косого цилиндра:

d v,, = dП·v·cos ·dN v,, /V, (14.9)
где V - объем сосуда, в котором содержится газ.

Проинтегрировав выражение (14.9) по углам в пределах телесного угла 2, что соответствует изменению углов  и в диапазоне от 0 до /2 и от 0 до 2соответственно, получим формулу для расчета полного числа ударов молекул, имеющих скорости от v до v + dv о стенку.

Проинтегрировав выражение по всем скоростям получим, что число ударов молекул о стенку площадью dП в единицу времени будет равно:

. (14.11)

Учитывая определение средней скорости получим, что число ударов молекул о стенку единичной площади в единицу времени будет равно:

= N/V·/4 = n·/4.

Распределение Больцмана, то есть распределение частиц во внешнем потенциальном поле, может быть использовано для определения констант, используемых в молекулярной физике. Один из самых важных и знаменитых экспериментов в этой области - это работы Перрена по определению числа Авогадро. Так как молекулы газов не видны даже в микроскоп, то на эксперименте использовались гораздо большие по размеру броуновские частицы. Эти частицы помещались в раствор, в котором на них действовала выталкивающая сила. При этом уменьшалась сила тяжести, действующая на броуновские частицы, и тем самым распределение частиц по высоте как бы растягивалось. Это давало возможность наблюдать это распределение в микроскоп.

Одна из трудностей состояла в получении взвешенных частиц совершенно одинакового размера и формы. Перрен пользовался частицами гуммигута и мастики. Растирая гуммигут в воде. Перрен получал эмульсию ярко-желтого цвета, в которой при наблюдении в микроскоп можно было различить множество зернышек сферической формы. Вместо механического растирания Перрен обрабатывал также гуммигут или мастику спиртом, растворяющим эти вещества. При разбавлении такого раствора большим количеством воды получалась эмульсия из таких же сферических зернышек, что и при механическом растирании гуммигута. Для отбора зернышек совершенно одинакового размера Перрен подвергал взвешенные в 1воде частицы многократному центрифугированию и таким путем получал весьма однородную эмульсию, состоящую из шарообразных частиц с радиусом порядка микрометра. Обработав 1 кг гуммигута, Перрен получил через несколько месяцев фракцию, содержавшую несколько дециграммов зерен желаемого размера. С этой фракцией и были выполнены описываемые здесь опыты.

При изучении эмульсии надо было производить измерения при ничтожных разностях высот - всего в несколько сотых миллиметра. Поэтому распределение концентрации частиц по высоте исследовалось с помощью микроскопа. К предметному стеклу микроскопа (изображено на рисунке) приклеивалось очень тонкое стекло с просверленным в нем широким отверстием. Таким путем получалась плоская ванночка (кювета Цейсса (1816-1886)), высота которой была около 100 мкм (0,1 мм). В центре ванночки помещалась капля эмульсии, которая тотчас сплющивалась покровным стеклом. Чтобы избежать испарения, края покровного стекла покрывались парафином или лаком. Тогда препарат можно было наблюдать в течение нескольких дней или даже недель. Препарат помещался на столике микроскопа, тщательно установленного в горизонтальном положении. Объектив был очень сильного увеличения с малой глубиной фокуса, так что одновременно можно было видеть только частицы, находящиеся внутри очень тонкого горизонтального слоя с толщиной порядка микрометра. Частицы совершали интенсивное броуновское движение. Фокусируя микроскоп на определенный горизонтальный слой эмульсии, можно было сосчитать число частиц в этом слое. Затем микроскоп фокусировался на другой слой, и снова считалось число видимых броуновских частиц. Таким путем можно было определить отношение концентраций броуновских частиц на разных высотах. Разность высот измерялась микрометрическим винтом микроскопа.

Теперь перейдем к конкретным расчетам. Так как броуновские частицы находятся в поле сил тяжести и Архимеда, то потенциальная энергия такой частицы

В этой формуле p - плотность гуммигута, p - плотность жидкости, V - объем частицы гуммигута. Начало отсчета потенциальной энергии выбрано на дне кюветы, то есть при h = 0. Распределение Больцмана для такого поля запишем в виде

n(h) = n0e kT = n0e kT . Напомним, что n - число частиц в единице объема на высоте h, а n0 - число частиц в единице объема на высоте h = 0.

Число шариков AN, видимых в микроскоп на высоте h, равно n(h)SAh, где S - площадь видимой части эмульсии, а Ah - глубина резкости микроскопа (в опыте Перрена эта величина составляла 1 мкм). Тогда отношение чисел частиц на двух высотах h1 и h2 запишем так:

AN1 = ((p-p")Vg(h2 _ h1) - exp

Вычислив логарифм от обеих частей равенства и произведя несложные вычисления, получаем значение постоянной Больцмана, а, затем и числа Авогадро:

k (p_p")Vg(h2 _ h1)

При работе в различных условиях и с различными эмульсиями Перрен получил значения постоянной Авогадро в диапазоне от 6.5 1023 до 7.2 1023 моль-1. Это было одним из прямых доказательств молекулярно - кинетической теории, в справедливость которой в то время верили далеко не все ученые.

Средняя энергия молекул.

В тепловом движении участвуют все молекулы вещества, поэтому с изменением характера теплового движения изменяется и состояние вещества, его свойства. Так, при повышении температуры вода закипает, превращаясь в пар. Если понижать температуру, вода замерзает и из жидкости превращается в твёрдое тело.

ОПРЕДЕЛЕНИЕ

Температура - скалярная физическая величина, которая характеризует степень нагретости тела.

Температура является мерой интенсивности теплового движения молекул и характеризует состояние теплового равновесия системы макроскопических тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Температуру измеряют термометром . В любом термометре используется изменение какого-либо макроскопического параметра в зависимости от изменения температуры.

Единицей измерения температуры в системе единиц СИ является градус Кельвина (К). Формула перехода от шкалы Цельсия к шкале температур Кельвина (абсолютной шкале) имеет вид:

где температура по шкале Цельсия.

Минимальной температуре соответствует нуль по абсолютной шкале. При абсолютном нуле тепловое движение молекул прекращается.

Чем выше температура тела, тем больше скорости теплового движения молекул, а, следовательно, тем большей энергией обладают молекулы тела. Таким образом, температура служит мерой кинетической энергии теплового движения молекул.

Средняя квадратичная скорость движения молекул

Средняя квадратичная скорость движения молекул вычисляется по формуле:

где постоянная Больцмана, Дж/К.

Средняя кинетическая энергия движения одной молекулы

Средняя кинетическая энергия движения одной молекулы:

Физический смысл постоянной Больцмана заключается в том, что эта постоянная определяет связь между температурой вещества и энергией теплового движения молекул этого вещества.

Важно отметить, что средняя энергия теплового движения молекул зависит только от температуры газа . При данной температуре средняя кинетическая энергия поступательного хаотического движения молекул не зависит ни от химического состава газа, ни от массы молекул, ни от давления газа, ни от объема, занимаемого газом.

Примеры решения задач

ПРИМЕР 1

Задание Какова средняя кинетическая энергия молекул аргона, если температура газа С?
Решение Средняя кинетическая энергия молекул газа определяется по формуле:

Постоянная Больцмана .

Вычислим:

Ответ Средняя кинетическая энергия молекул аргона при заданной температуре Дж.

ПРИМЕР 2

Задание На сколько процентов увеличится средняя кинетическая энергия молекул газа при изменении его температуры от 7 до ?
Решение Средняя кинетическая энергия молекул газа определяется соотношением:

Изменение средней кинетической энергии вследствие изменения температуры:

Процентное изменение энергии:

Переведем единицы в систему СИ: .

Вычислим:

Ответ Средняя кинетическая энергия молекул газа увеличится на 10%.

ПРИМЕР 3

Задание Во сколько раз средняя квадратичная скорость пылинки массой кг, взвешенной в воздухе, меньше средней квадратичной скорости движения молекул воздуха?
Решение Средняя квадратичная скорость пылинки:

средняя квадратичная скорость молекулы воздуха:

Масса молекулы воздуха:

Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика - раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.

Тепловое движение - беспорядочное (хаотическое) движение атомов или молекул вещества.

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Молекулярно-кинетическая теория - теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.

Основные положения молекулярно-кинетической теории:

  1. вещество состоит из частиц - молекул и атомов, разделенных промежутками,
  2. эти частицы хаотически движутся,
  3. частицы взаимодействуют друг с другом.

МАССА И РАЗМЕРЫ МОЛЕКУЛ

Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода - 5,32*10 -26 кг. Масса одного атома углерода m 0C =1,995*10 -26 кг

Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).

Количество вещества - это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода N A:

Моль - количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.

Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:

Молярная масса - масса 1 моля вещества:

Молярная и относительная молекулярная массы вещества связаны соотношением: М = М r *10 -3 кг/моль.

СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ

Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит характер определенной закономерности, которая называется распределением Максвелла.

График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.

ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Идеальный газ - это упрощенная модель газа, в которой:

  1. молекулы газа считаются материальными точками,
  2. молекулы не взаимодействуют между собой,
  3. молекулы, соударяясь с преградами, испытывают упругие взаимодействия.

Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.

Основное уравнение молекулярно-кинетической теории можно записать в виде

Скорость называют средней квадратичной скоростью.

ТЕМПЕРАТУРА

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273

где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Средняя квадратичная скорость молекул

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Пусть газ массой m занимает объем V при температуре Т и давлении р , а М - молярная масса газа. По определению, концентрация молекул газа: n = N/V , где N -число молекул.

Подставим это выражение в основное уравнение молекулярно-кинетической теории:

Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде

называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия - давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).

1. Изотермический процесс

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Если Т =const, то

Закон Бойля-Мариотта

Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p 1 V 1 =p 2 V 2 при Т = const

График процесса, происходящего при постоянной температуре, называется изотермой.

2. Изобарный процесс

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Закон Гей-Люссака

Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:

Если газ, имея объем V 0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать

Обозначив

получим V=V 0 T

Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой .

3. Изохорный процесс

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то

Закон Шарля

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:

Если газ, имея объем V 0 ,находится при нормальных условиях:

а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р , то можно записать

График процесса, происходящего при постоянном объеме, называется изохорой .

Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?

Из уравнения состояния идеального газа

определим величину давления.

«ТЕПЛОВОЕ ДВИЖЕНИЕ МОЛЕКУЛ»

КГТУ. Каф. Физики. Гайсин Н.К., Казанцев С.А., Минкин В.С., Самигуллин Ф.М.

Для перемещения по тексту можно использовать:

1- нажатие клавиш PgDn, PgUp,,  для перемещения по страницам и по строкам ;

2- нажатие левой клавиши «мыши» по выделенному тексту для перехода в требуемый раздел;

3- нажатие левой клавиши «мыши» по выделенному значку @ для перехода в оглавление

    Характер теплового движения молекул в разных состояниях. Средние энергии молекул в разных фазах. Распределение молекул по скоростям.

    Диффузия. Коэффициент диффузии.

    Моделирование движения молекул с помощью компьютера.

    Упражнение. Наблюдение и анализ: 1-траекторий движения молекул в трех агрегатных состояниях, 2- графиков распределения молекул по скоростям, 3-радиальных функций распределения, 4-коэффициентов диффузии.

@ 1. .Характер теплового движения молекул в разных состояниях. Средние энергии молекул в разных фазах. Распределение молекул по скоростям.

Как известно молекулы и атомы в веществе постоянно находятся в движении, которое имеет случайный, хаотический характер. Тем не менее в каждом агрегатном состоянии имеются характерные особенности этого движения, которые во многом определяют свойства различных состояний. Это связано с тем, что межмолекулярные силы взаимодействия стремятся сблизить молекулы, а тепловое хаотичное движение препятствует этому и такие две тенденции в разных агрегатных состояниях дают, значительно отличающиеся, вклады в характер движения молекул. Для количественного анализа влияния различных вкладов, обычно рассматривают величину полной средней энергии молекулы и вклад в эту энергию кинетической и потенциальной составляющих.

В газах среднее расстояние между молекулами больше их размеров, силы притяжения малы, а интенсивность движения значительна, что не позволяет молекулам объединиться на длительное время, а при отсутствии сосуда молекулы стремятся заполнить все доступное пространство. В газах потенциальная энергия взаимодействия отрицательна, кинетическая энергия имеет большую величину, поэтому полная энергия молекулы положительна и при расширении молекулярная система может совершать работу над внешними системами. Вследствие этого, молекулы распределены в пространстве равномерно, большее время находятся на больших расстояниях (Рис.1а) и двигаются равномерно и прямолинейно без взаимодействия. Взаимодейтвие молекул имеет кратковременный характер и происходит только при их столкновении, что приводит к значительному изменению траектории движения.

В твердых телах среднее расстояние между молекулами сравнимо с их размерами, поэтому силы притяжения очень велики и даже сравнительно большая интенсивность движения не позволяет молекулам разойтись на большие расстояния. В данном случае отрицательная потенциальная энергия взаимодействия много больше кинетической энергии, поэтому полная энергия молекулы также отрицательна и для разрушения твердого тела необходимо совершать значительную работу. Молекулы в твердом теле располагаются на строго определенных расстояниях друг от друга и совершают колебательные движения около некоторых средних положений, называемых узлами кристаллической решетки (Рис.1в).

В жидкостях расстояние между молекулами сравнимо с их размерами, силы притяжения велики, но интенсивность теплового движения тоже большая, что позволяет молекулам по истечении некоторого времени отойти друг от друга на большие расстояния. В жидкостях отрицательная потенциальная энергия взаимодействия сравнима по величине с кинетической энергией, поэтому полная энергия молекулы близка к нулю, что позволяет жидкости легко деформироваться и без разъединения занимать доступный объем под действием даже слабых внешних сил. Молекулы в жидкости, находятся в среднем на определенных, близких друг от друга расстояниях и совершают, похожие на колебания, движения около средних положений, которые также перемещаются хаотически в пространстве (Рис.1б).

Рис. 1. Характер движения молекул в газах (а), жидкостях (б) и твердых (в) телах

В результате взаимодействия между молекулами молекулярная система через некоторое время, называемым временем релаксации, приходит в равновесное состояние, характеризуемое: 1- определенным уравнением состояния, связывающим термодинамические параметры вещества; 2- определенной радиальной функцией, характеризующей распределения молекул в пространстве; 3- функцией Максвелла, характеризующей распределения молекул по скоростям (Рис.2 ).

При каждом акте взаимодействия молекул друг с другом их скорости меняются и в результате через некоторое время устанавливается равновесное состояние, при котором число молекул dN , имеющих скорость в определенном диапазоне значений dV сохраняется постоянным и определяется функцией Максвелла F (V ) согласно соотношениям

dN = N F(V) V , F(V)=4V 2 (m/2kT) 3/2 exp(-mV 2 /2kT).

Вид этой функции показан на Рис.2, она существенно зависит от температуры Т и характеризуется наличием максимума, который указывает на наличие наиболее вероятной скорости V вер. Как видно из графиков (Рис.2), в веществе имеются молекулы с любыми скоростями, но число молекул со скоростями в диапозоне dV около наивероятнейшей будет наибольшим. Максвелловское распределение молекул по скоростям характерно для всех агрегатных состояний, но время релаксации к такому распределению у них разное, это связано с различием времени взаимодействия молекул в разных фазах.

Рис. 2. Максвелловское распределение молекул по скоростям.

@ 2_Диффузия. Коэффициент диффузии.

Вследствие теплового движения молекул в веществе происходит диффузия. Диффузия это явление переноса вещества из одной части занимаемого им объема в другую. Это явление наиболее сильно проявляется в газах и жидкостях, в которых тепловое движение молекул особенно интенсивно и возможно на большие расстояния.

Феноменологически диффузия описывается законом Фика, который устанавливает связь между удельным потоком J i компонента i и градиентом концентрации этого компонента вещества n i

Удельный поток диффузии J i - это количество молекул компонента i, перенесенного за единицу времени через единицу площади поперечного сечения, перпендикулярного к направлению потока вещества, n i – числовая плотность компонента i, D i – коэффициент диффузии, V 0 – гидродинамическая скорость вещества. Коэффициент диффузии в системе СИ имеет размерность м 2 с -1 . Знак минус в формуле Фика указывает на то, что поток диффузии направлен обратно направлению роста концентрации вещества. Уравнение Фика описывает только стационарный процесс диффузии, при котором концентрация, ее градиент и диффузионный поток не зависят от времени.

Механизм диффузии в газах подробно рассматривается в разделе молекулярной физики. Молекулярно-кинетическая теория газов приводит к известному выражению для коэффициента диффузии

где i - средняя длина свободного пробега и i - средняя арифметическая скорость поступательного движения молекул газа сорта i, d i – эффективный диаметр, m i - масса молекул, n i – числовая плотность, p – давление. Эта формула соблюдается в довольно широком интервале давлений и температур для не плотных газов и дает значение порядка 10 -5 м 2 /c.

Однако диффузия молекул в жидкостях значительно отличается от диффузии в газах, это связано с различием характера движения молекул в этих фазах. Плотность вещества в жидком состоянии в тысячи раз больше его плотности в газообразном состоянии. Поэтому в жидкостях каждая молекула сидит в плотном окружении соседних молекул и не имеет свободы поступательных перемещений как в газах. Согласно известной теории Френкеля, молекулы в жидкостях, как и в твердых телах, совершают беспорядочные колебания около положений равновесия. Эти положения можно рассматривать как потенциальные ямы, созданные окружающими молекулами. В кристаллах молекулы не могут покидать свои положения равновесия, и поэтому можно считать, что в них практически отсутствуют поступательные перемещения молекул. В жидкостях такие положения не являются постоянными. Время от времени молекулы меняют свои положения равновесия, оставаясь в плотном окружении других молекул.

Диффузию молекул в однокомпонентных жидкостях, обусловленную их тепловым движением в отсутствие градиентов концентрации, обычно называют самодиффузией молекул. Для того, чтобы молекулы, преодолев взаимодействие с окружающими молекулами, могли совершить переход в новое положение, необходима энергия. Та минимальная энергия, которая необходима, чтобы молекула покинула временную потенциальную яму, называется энергией активации. Молекулу, получившую такую энергию, называют активированной. Молекулы, совершающие беспорядочные колебания, активируются в результате столкновений с окружающими молекулами. Энергия активации в жидкостях значительно меньше, чем в кристаллах. Поэтому переходы молекул в жидкостях с одного места на другое значительно чаще, чем в кристаллах. Число активированных молекул определяется распределением Больцмана, и частота переходов (скачков㿹 молекул в новые положения , определяется приближенной формулой
, где 0 - коэффициент, слабо зависящий от температуры, Е – энергия активации.

Для получения формулы коэффициента диффузии для жидкости рассмотрим диффузионный поток через некоторую поверхность площадью s . При тепловом движении молекулы проходят через эту поверхность как в прямом, так и в обратном направлениях. Поэтому удельный диффузионный поток может быть выражен в виде
, где знаки соответствуют прямому и обратному направлению осих . Найдем величины J + и J -- . Через выделенную поверхность, очевидно, за один скачок могут пройти без отклонения только те молекулы, которые находятся от нее на расстоянии не далее средней длины скачка молекул δ . Построим по обе стороны от поверхности цилиндр с площадью основания s . Через поверхность s пройдут только те молекулы, которые заключены в объеме цилиндра δ s . Однако пройдут не все молекулы, а только те из них скачки которых направлены вдоль оси х . Если считать, что молекулы с равной вероятностью движутся вдоль осей х, у и z , то через сечение в данном направлении пройдет только 1/6 часть общего числа молекул в цилиндре. Тогда число молекул, проходящих за один скачок через поверхность s в прямом направлении N + выразится в виде
, где n 1 – число молекул в единице объема на расстоянии δ влево от поверхности s . Аналогичное рассуждение о прохождении молекул через поверхность s в обратном направлении приведет к выражению
, где n 2 – число молекул в единице объема на расстоянии δ вправо от поверхности s . Тогда диффузионные потоки могут быть найдены как и . Полный поток выразится в виде

, где n 1 -n 2 – разность концентраций молекул в слоях, отстоящих друг от друга на среднем расстоянии δ можно записать в виде n 1 -n 2 =nx. Тогда получаем
. Сравнивая эту формулу с законом Фика для случая когда V 0 =0, находим

,

откуда
, где
- коэффициент, слабо зависящий от температуры, эта формула для жидкостей и плотных газов дает значение дляD порядка 10 -9 м 2 /c.

Явление самодиффузии молекул можно также анализировать путем рассмотрения теплового поступательного движения молекул, как серии беспорядочных, равновероятных перемещений (блужданий). За некоторый достаточно большой промежуток времени молекулы могут описать длинную траекторию, однако они сместятся от первоначального положения на незначительное расстояние. Рассмотрим совокупность молекул в виде беспорядочно движущихся частиц, выберем из этой совокупности некоторую молекулу и предположим, что она в начальный момент времени находится в начале системы координат. Далее через равные промежутки времени Δt будем отмечать радиусы-векторы ее места нахождения r (t i ) . Вектор перемещения молекулы между (i -1)-м i –м моментами времени будет выражаться в виде Δ r i = r (t i )- r (t i -1 ). К моменту времени t к = k Δt молекула окажется смещенной из начальной точки наблюдения в точку с радиусом-вектором r (t к ) , который выражается как векторная сумма смещений r (t к ) = r i . Квадрат смещения частицы за это время выразится в виде

r (t к ) = (Δ r i ) 2 =
(Δ r i Δ r j ) + Δ r i 2 .

Усредним полученное выражение по всем молекулам рассматриваемой совокупности, тогда ввиду независимости смещений молекул в разные промежутки времени в двойной сумме одинаково часто встречаются как положительные так и отрицательные значения скалярного произведения, поэтому ее статистическое среднее равно нулю. Тогда средний квадрат смещения частиц запишется как <r 2 (t k )> = <Δ r i 2 >. В жидкости <Δ r i 2 > следует считать равным среднему квадрату скачка молекулδ 2 , а число скачков за времяt k равнымt k . Тогда <r 2 (t k )>= t k δ 2 . Сопоставив это выражение с формулой дляD , получаем известное соотношение Эйнштейна, из которого становится ясным молекулярно-кинетический смысл коэффициента диффузииD

<r 2 (t )> = 6Dt .

Можно доказать, что коэффициенты диффузии в формулах Эйнштейна и Фика идентичны. Для однокомпонентной системы этот коэффициент называют коэффициентом самодиффузии, в случае диффузии в многокомпонентных смесях при наличии у них градиентов концентраций, потоки отдельных компонентов можно определить если известны коэффициенты диффузии всех компонентов в смеси. Экспериментально их находят методам радиоактивных меток или методом ядерного магнитного резонанса, в которых можно определять средний квадрат смещения «меченных» молекул.

@ 3_Моделирование движения молекул с помощью компьютера.

Современные средства вычислительной техники обладают огромной памятью и высоким быстродействием. Такие качества делают их незаменимым средством моделирования ряда физических процессов. В молекулярной физике широко развит метод молекулярной динамики - метод моделирования молекулярного движения. Этот метод широко применяется в газах, жидкостях, кристаллах и полимерах. Он сводится к численному решению уравнений динамики движения частиц в ограниченном объеме пространства с учетом взаимодействий между ними и может имитировать поведение молекул в произвольных условиях, аналогичным реальным. В этом отношении можно его уподобить реальному эксперименту, поэтому такое моделирование иногда называют численным экспериментом. Значение этих “экспериментов” состоит в том, что они дают возможность следить во времени за изменением нескольких макроскопических параметров, характеризующих систему частиц, и усредняя их по времени или по числу частиц, получать термодинамические параметры моделируемых реальных систем. Кроме того, они дают возможность визуализации молекулярного движения, позволяя следить за траекторией любой отдельно взятой частицы.

Алгоритм моделирования состоит из нескольких этапов. Вначале определенное число частиц (в пределах 10 2 -10 3) хаотично распределяют в некотором ограниченном объеме (в ячейке), задавая случайным образом начальные скорости и координаты каждой частицы. Начальные скорости частиц задаются так, чтобы средняя кинетическая энергия поступательного движения частиц была равна (3/2)кТ , т.е. соответствовала температуре опыта, а начальные координаты задают в соответствии со средним межмолекулярным расстоянием моделируемой системы.

Далее, зная потенциал взаимодействия частиц (например, потенциал Леннарда-Джонса) и соответственно силу межмолекулярного взаимодействия производится расчет результирующих мгновенных сил, действующих на каждую частицу со стороны всех остальных частиц, и по уравнению динамики (второму закону Ньютона) вычисляются мгновенные ускорения частиц, вызванные, действием этих сил. Зная ускорения, а также начальные координаты и скорости, производится расчет скоростей и координат частиц в конце заданного малого промежутка времени t (обычно 10 -14 с). При средней скорости движения частиц около 10 3 м/с, смещение частиц за такой малый промежуток времени составляет величину порядка 10 -11 м, что значительно меньше их размеров.

Последовательное повторение таких вычислений с запоминанием мгновенных сил, скоростей и координат частиц, позволяет знать координаты и скорости всей системы частиц на достаточно большом промежутке времени. Ограниченность объема учитывается специальными граничными условиями. Либо полагают, что на границе заданного объема частица испытывает абсолютно-упругое соударение со стенкой и вновь возвращается в объем, либо считают, что данная ячейка окружена со всех сторон такими же ячейками и, если частица выходит из данной ячейки, то одновременно тождественная ей частица входит с противоположной ячейки. Таким образом, число частиц и их полная энергия в объеме ячейки не меняются. Вследствие математически случайного характера первоначального распределения частиц по скоростям и координатам, необходимо некоторое время (время релаксации –10 -12 - 10 -11 с), в течении которого в системе устанавливается равновесное состояние частиц по скоростям (Максвелловское распределение скоростей) и по координатам (распределение в соответствии с радиальной функцией распределения).

Значения макроскопических параметров, характеризующих систему, вычисляются путем их усреднения по траектории или по скоростям частиц. Например, давление на стенки сосуда можно получить путем усреднения изменений импульсов частиц, сталкивающихся с границами ячейки. Усреднением числа частиц в шаровых слоях, находящихся на различных расстояниях r от выбранной молекулы, можно определить радиальную функцию распределения. По средним квадратам смещений частиц за заданное время, можно рассчитать коэффициенты самодиффузии молекул. Подобным образом определяют и другие искомые характеристики.

Естественно, процессы, происходящие в системе частиц за короткое время, рассчитываются ЭВМ за значительное время. Машинное время, затрачиваемое на расчеты, может составить десятки, а то и сотни часов. Это зависит от числа выбранных в ячейке частиц и от быстродействия ЭВМ. Современные ЭВМ позволяют моделировать динамику до 10 4 частиц, доводя время наблюдения за процессом их перемещений до 10 -9 с, точность расчета характеристик исследуемых систем позволяет не только уточнять теоретические положения, но и использовать их на практике.

@ 4_Упражнение. Наблюдение и анализ: 1-траекторий движения молекул в трех агрегатных состояниях, 2- графиков распределения молекул по скоростям, 3-радиальных функций распределения, 4-коэффициентов самодиффузии.

В данном упражнении программа компьютера моделирует методом молекулярной динамики движение атомов аргона (с потенциалом взаимодействия Леннард-Джонса) в трех агрегатных состояниях: плотный газ, жидкость, твердое тело. Для выполнения данного упражнения необходимо войти в программу MD-L4.EXE, последовательно просмотреть и выполнить предлагаемые пункты меню.

Меню программы содержит четыре пункта:

1 ИНСТРУКЦИЯ ДЛЯ РAБОТ Ы,

2 ВЫБОР ПAРAМЕТРОВ МОДЕЛИРУЕМЫХ СОСТОЯНИЙ,

3 МОДЕЛИРОВAНИЕ ДИНAМИКИ ЧAСТИЦ,

4 КОНЕЦ РAБОТЫ.

В пункте 1- <<ИНСТРУКЦИЯ ДЛЯ РAБОТЫ>> рассказывается о программе и о методике работы с программой. Необходимо отметить и запомнить: 1) Данная программа предусматривает работу в двух режимах для выполнения двух видов работ, необходимых при моделировании молекулярного движения в разных фазах; 2) Результаты моделирования выдаются на два экрана, переключение между которыми производится одновременным нажатием клавиш Alt +1 и Alt +2 , останов работы программы и выход в меню производится одновременным нажатием клавиш Ctrl и S ; 3) Для правильного выполнения программы необходимо следить за ее сообщениями и правильно выполнять их.

В пункте 2 программа работает в режиме <<ВЫБОР ПAРAМЕТРОВ МОДЕЛИРУЕМЫХ СОСТОЯНИЙ>> , который позволяет рассмотреть фазовую диаграмму для системы частиц с потенциалом взаимодействия Леннард-Джонса и рассчитать для различных агрегатных состояний следующие параметры: приведенное давление P*=Pd 3 /e и приведенную полную энергию одной частицы U*=u/e. 3десь: n-числовая плотность, u-внутренняя энергия одной частицы, к-постоянная Больцмана, P-давление, Т-температура, d-эффективный диаметр частицы, е-глубина потенциальной ямы. Для расчета необходимо рассмотреть фазовую диаграмму в координатах n*, T* (n*=nd 3 - приведенная числовая плотность, T*=кT/e - приведенная температура) и ввести n*, T*. На этой фазовой диаграмме Вам необходимо найти области: плотного газа, жидкого, твердого состояний и ввести n*, T* для трех точек в каждой из этих областей. Для анализа влияния температуры необходимо выбирать точки с разными температурами, но с одинаковыми плотностями (T* и n* можно взять из Таблицы N1). Выбранные Вами и рассчитанные программой, термодинамические параметры этих точек для трех состояний занесите в Таблицу N1, для этих точек Вы будете проводить моделирование движения атомов аргона.

В пункте меню 3 программа работает в режиме <<МОДЕЛИРОВAНИЕ ДИНAМИКИ ЧAСТИЦ>> , он позволяет рассматривать картину движения молекул в разных агрегатных состояниях и рассчитывать путем усреднения ряд термодинамических параметров. После выбора (с помощью дополнительного меню) типа моделируемого агрегатного состояния (плотный газ, жидкость, твердое тело), программа предложит Вам параметры этого состояния, заложенные в программу, если Вы выбрали другие параметры, то их можно на данном этапе изменить согласно Таблице N1 (для этого на запрос <<ВЫ БУДЕТЕ МЕНЯТЬ ПЛОТНОСТЬ И ТЕМПЕРAТУРУ? (Y/N)>> нажмите Y, в противном нажмите N) . В данном режиме информация о динамике выдается на два экрана, для включения которых необходимо нажать Alt и 1 или Alt и 2 .

На первый экран выводятся данные о системе и графики флюктуаций для: 1-температуры, 2-потенциальной энергии частицы, 3-кинетической энергии, 4-полной энергии частицы. Кроме этого в бегущей строке выдается мгновенная дополнительная численная информация: Ni-текущее число шагов итераций, t(c)-физическое время моделирования динамики, ЕР+ЕК(Дж)-полная энергия одной частицы, U*-приведенная энергия, Т(К)-температура, t i (c)-машинное время счета одного шага для одной частицы, P*-приведенное давление, Pv(Па)-давление(вериал), P=nkT, dt(c)-шаг интегрирования по времени.

На второй экран выводятся траектории частиц и графики характеристик, полученные путем усреднения динамических параметров движения частиц: 1-графики распределения частиц по скоростям на фоне распределения Максвелла (Vвер - наиболе вероятная скорость, температуры заданные и средняя); 2-график радиальной функци распределения, 3-график зависимости среднего квадрата смещения частиц от времени и значение коэффициента самодиффузии.

После запуска программы Вам необходимо наблюдать за изменениями характеристик и дождаться момента времени, когда флюктуации потенциальной и кинетической станут достаточно малы (5-10%). Это состояние можно считать равновесным, оно достигается программой автоматически путем проведения динамики в течении 2.10 -12 c, после этого радиальная функция распределения и функция распределения по скоростям будут соответствовать равновесным. После достижения равновесного состояния (примерно через 1.10 -11 с.) необходимо занести требуемые данные с обоих экранов в Таблицу N2. Аналогичные расчеты провести для трех температур в каждом агрегатном состоянии, для последней температуры зарисовать функцию распределения по скоростям и радиальную функцию распределения.

После окончания работы через пункт 4- <<КОНЕЦ РAБОТЫ>> необходимо вернуться к работе с методическим пособием.

Приготовьте в своей тетрадке Таблицу N1, Таблицу N2 .

Таблица N1.Параметры трех моделируемых фазовых состояний аргона.

 

Возможно, будет полезно почитать: