Скорость ферментативной реакции определяют. Скорость ферментативной реакции

Как известно, скорость химической реакции, согласно эмпирическому правилу Вант-Гоффа, при повышении температуры на 10 о увеличивается в 2-4 раза. Однако для ферментативных реакций оно соблюдается лишь до 50-60 о С. При более высоких температурах фермент, представляющий собой белок, денатурирует, изменяется его конформация, и он уже не может выполнять свои каталитические функции. Поэтому зависимость скорости ферментативной реакции от температуры имеет вид кривой с максимумом (рисунок)

Максимум соответствует наивысшей активности фермента, которая обычно измеряется его количеством в мг, которое катализирует 1 мгмоль субстрата за 1 мин. Удельная активность измеряется в расчете на 1 мг фермента (мгмоль/мин). Молярная активность (число оборотов или каталитическая константа) рассчитывается на мгмоль фермента (мгмоль/мгмоль ∙×мин), то есть молярная активность показывает, сколько молекул субстрата превращается за 1 минуту одной молекулой фермента.

Кроме температуры на активность ферментов влияют рН среды и присутствие ингибиторов.

Влияние рН на скорость ферментативной реакции

Для большинства ферментативных реакций оптимальное значение рН среды лежит в интервале 5− 9. Кривая зависимости скорости ферментативной реакции от рН является кривой с максимумом (рисунок)

Такой вид кривой обусловлен тем, что существует оптимальное состояние ионизации субстрата и белковой молекулы фермента (её аминокислотных остатков), которое обеспечивает наиболее прочное их соединение в активном центре и, следовательно, наибольшую скорость реакции.

Ингибиторы ферментов

Действие ферментов может быть ослаблено или полностьюподавлено с помощью определенных веществ – ингибиторов . Их действие может быть обратимым и необратимым.

Обратимые ингибиторы обычно связываются с ферментом нековалентными связями и могут быть легко от них отсоединяться, при этом существуют так называемые конкурентные обратимые ингибиторы, которые имеют сходные структуры с субстратом и стремятся, каждый в первую очередь, связаться с ферментом на субстратсвязывающем участкеактивного центра. Если к ферменту Е добавить конкурентный ингибитор I и субстрат S, то образуются два комплекса по реакциям:



Е + S « ES ® Р + Е

Е + I « Е I ≠ Р

Так как образование комплекса ЕI не приводит к образованию продуктов реакции, то скорость реакции их образования уменьшается, так как уменьшается число активных центров фермента, способных взаимодействовать с субстратом. Поскольку конкурентный ингибитор связывается с ферментом обратимо, то уменьшить его действие можно, увеличивая концентрацию субстрата, так как при этом увеличивается вероятность связывания фермента с субстратом. Ингибитор, мешая образованию фермент-субстратного комплекса, он увеличивает константу Михаэлиса К m , но не изменяет V max .

Неконкурентный обратимый ингибитор не сходен поструктуре, с субстратом, поэтому он может связываться с ферментом и в присутствии и в отсутствии субстрата, и обычно связывается с ферментом не в активном центре, а в другом месте, обычно в регуляторном центре. При этом образуется тройной комплекс: фермент-ингибитор-субстрат (ЕSI), который не приводит к образованию продуктов реакции:

Е + S + I ® Е I ≠ Р

При данном типе ингибирования влияние ингибитора не может быть преодолено повышением концентрации субстрата. Неконкурентный обратимый ингибиторуменьшает как V max , так и К m .

Необратимые ингибиторы ферментов – это соединения, которые образуют прочные связи с ферментом, причем именно в активном его центре. Связывая важные группы на субстрат связывающем участке, они необратимо изменяют его конфигурацию. Так необратимо действуют на ферменты ионы тяжелых металлов Hg +2 и Pb +2 , чем объясняется их токсическое действие на организм человека.

Регуляция действия ферментов осуществляется гормонами.

ДИНАМИЧЕСКАЯ БИОХИМИЯ

Совокупность химических реакций, протекающих в живых клетках, и обеспечивающих организм нужными ему веществами и энергией носят название обмена веществ или метаболизма. Различают катаболизм и анаболизм. Катаболическое превращение – это расщепление сложных молекул, как поступающих с пищей, так и находящихся в клетке, эти процессы называются экзогоническими.

Анаболические процессы (процессы биосинтеза) направлены на образование и обновление структурных элементов клеток, то есть на синтез сложных молекул из простых. Процессы биосинтеза – это восстановительные процессы и они сопровождаются затратой свободной энергии, такие процессы называются эндергоническими. Обе стороны процесса взаимосвязаны между собой во времени и пространстве. Катаболические и анаболические процессы протекают в различных органеллах клетки, где локализованы различные внутриклеточные ферменты. Все метаболические пути взаимосвязаны, что показано на интегральной схеме метаболических путей.


Ферментативная кинетика изучает влияние различных факторов (концентрация S и E, рН, температура, давление, ингибиторы и активаторы) на скорость ферментативных реакций. Главной целью изучения кинетики ферментативных реакций является получение информации, позволяющей глубже понять механизм действия ферментов.

Кинетическая кривая позволяет определить начальную скорость реакции V 0 .

Кривая субстратного насыщения.

Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от температуры.

Зависимость скорости реакции от рН.

Оптимум рН действия большинства ферментов лежит в пределах физиологических значений 6,0-8,0. Пепсин активен при рН 1,5-2,0, что соответствует кислотности желудочного сока. Аргиназа, специфичный фермент печени, активен при 10,0. Влияние рН среды на скорость ферментативной реакции связывают с состоянием и степенью ионизации ионогенных групп в молекуле фермента и субстрата. Этот фактор определяет конформацию белка, состояние активного центра и субстрата, формирование фермент-субстратного комплекса, собственно процесс катализа.

Математическое описание кривой субстратного насыщения, константа Михаэлиса .

Уравнение, описывающее кривую субстратного насыщения, было предложено Михаэлисом и Ментон и носит их имена (уравнение Михаэлиса-Ментен):

V = (V MAX *[ S ])/(Km +[ S ]) , где Km – константа Михаэлиса. Легко рассчитать, что при V = V MAX /2 Km = [S], т.е. Km – это концентрация субстрата, при которой скорость реакции составляет ½ V MAX .

С целью упрощения определения величины V MAX и Km уравнение Михаэлиса-Ментен можно пересчитать.

1/V = (Km+[S])/(V MAX *[S]),

1/V = Km/(V MAX *[S]) + 1/V MAX ,

1/ V = Km / V MAX *1/[ S ] + 1/ V MAX уравнение Лайнуивера-Берка. Уравнение, описывающее график Лайнуивера-Берка – это уравнение прямой линии (y = mx + c), где 1/V MAX – это отрезок, отсекаемый прямой на оси ординат; Km/V MAX - тангенс угла наклона прямой; пересечение прямой с осью абсцисс дает величину 1/Km. График Лайнуивера-Бэрка позволяет определить Km по относительно небольшому числу точек. Этот график также используют при оценке действия ингибиторов, о чем будет сказано ниже.

Значение Km изменяются в широких пределах: от 10 -6 моль/л для очень активных ферментов, до 10 -2 – для малоактивных ферментов.

Оценки Km имеют практическую ценность. При концентрациях субстрата в 100 раз превышающих Km, фермент будет работать практически с максимальной скоростью, поэтому максимальная скорость V MAX будет отражать количество присутствующего активного фермента. Это обстоятельство используют для оценки содержания фермента в препарате. Кроме того, Km является характеристикой фермента, что используется для диагностики энзимопатий.

Ингибирование активности ферментов.

Чрезвычайно характеристикой и важной особенностью ферментов является их инактивация под влиянием определенных ингибиторов.

Ингибиторы – это вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибирование ферментативной активности может быть необратимым или обратимым, конкурентным или неконкрентным.

Необратимое ингибирование – это стойкая инактивация фермента, возникающая в результате ковалентного связывания молекулы ингибитора в активном центре или в другом особом центре, изменяющим конформацию фермента. Диссоциация столь устойчивых комплексов с регенерацией свободного фермента практически исключена. Для преодоления последствий такого ингибирования организм должен синтезировать новые молекулы фермента.

Обратимое ингибирование – характеризуется равновесным комплексообразованием ингибитора с ферментом за счет нековалентных связей, вследствие чего такие комплексы способны к диссоциации с восстановлением активности фермента.

Классификация ингибиторов на конкурентные и неконкурентные основана на том, ослабляется (конкурентное ингибирование ) или не ослабляется (неконкурентное ингибирование ) их ингибирующие действие при повышении концентрации субстрата.

Конкурентные ингибиторы – это, как правило, соединения, структура которых сходна со структурой субстрата. Это позволяет им связываться в том же активном центре, что и субстраты, препятствуя взаимодействию фермента с субстратом уже на стадии связывания. После связывания ингибитор может быть превращен в некий продукт или остается в активном центре, пока не произойдет диссоциация.

Обратимое конкурентное ингибирование можно представить в виде схемы:

E↔ E-I → E + P 1

S (неакт)

Степень ингибирования фермента определяется соотношением концентраций субстрата и фермента.

Классическим примером подобного типа ингибирования является торможение активности сукцинатдегидрогеназы (СДГ) малатом, который вытесняет сукцинат из субстратного участка и препятствует его превращению в фумарат:

Ковалентное связывание ингибитора в активном центре приводит к инактивации фермента (необратимое ингибирование). Примером необратимого конкурентного ингибирования может служить инактивация триозофосфатизомеразы 3-хлорацетолфосфатом. Этот ингибитор является структурным аналогом субстрата – диоксиацетонфосфата и необратимо присоединяется к остатку глутаминовой кислоты в активном центре:

Некоторые ингибиторы действуют менее избирательно, взаимодействуя с определенной функциональной группой в составе активного центра разных ферментов. Так, связывание йодацетата или его амида с SH-группой аминокислоты цистеина, находящийся в активном центре фермента и принемающей участие в катализе, приводит к полной утрате активности фермента:

R-SH + JCH 2 COOH → HJ + R-S-CH 2 COOH

Поэтому эти ингибиторы инактивируют все ферменты, которые имеют SH-группы, участвующие в катализе.

Необратимое ингибирование гидролаз при действии нервно-паралитических газов (зарин, зоман) обусловлено их ковалентным связыванием с остатком серина в активном центре.

Метод конкурентного ингибирования нашел широкое применение в медицинской практике. Сульфаниламидные препараты – антагонисты п-аминобензойной кислоты, могут служить примером метаболизируемых конкурентных ингибиторов. Они связываются с дигидроптератсинтетазой – бактериальным ферментом, осуществляющим превращение п-аминобензоата в фолиевую кислоту, необходимую для роста бактерий. Бактерия погибает в результате того, что связавшийся сульфаниламид превращается в другое соединение и фолиевая кислота не образуется.

Неконкурентные ингибиторы обычно связываются с молекулой фермента в участке, отличном от места связывания субстрата, и субстрат непосредственно не конкурирует с ингибитором. Поскольку ингибитор и субстрат связываются с разными центрами возможно образование как комплекса E-I, так и комплекса S-E-I. Комплекс S-E-I тоже распадается с образованием продукта, однако с меньшей скоростью, чем E-S, поэтому реакция будет замедляться, но не остановится. Таким образом, могут протекать следующие параллельные реакции:

E↔ E-I ↔ S-E-I → E-I + P

Обратимое неконкурентное ингибирование встречается сравнительно редко.

Неконкурентные ингибиторы называют аллостерическими в отличие от конкурентных (изостерических ).

Обратимое ингибирование может быть количественно изучено на основе уравнения Михаэлиса-Ментен.

При конкурентном ингибировании V MAX остается постоянной, а Km возрастает.

При неконкурентном ингибировании снижается V MAX при неизменном Km.

Если продукт реакции ингибирует фермент, катализирующий его образование, такой способ ингибирования называется ретроингибированием или ингибированием по принципу обратной связи . Например, глюкоза тормозит глюкозо-6-фосфатазу, которая катализирует гидролиз глюкозо-6-фосфата.

Биологическое значение такого ингибирования – регуляция определенных метаболических путей (см. следующее занятие).

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание студентам

1. Изучить денатурацию белков под действием растворов минеральных и органических кислот и при нагревании.

2. Обнаружить кофермент НАД в дрожжах.

3. Определить амилазную активность в моче (сыворотке крови).

9. ЭТАЛОНЫ ОТВЕТОВ НА ЗАДАЧИ , тестовые вопросы, используемые при контроле знаний на занятии (можно в виде приложения)

10. ХАРАКТЕР И ОБЪЕМ ВОЗМОЖНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ПО ТЕМЕ

(Указать конкретно характер и форму УИРС: подготовка реферативных выступлений, проведение самостоятельных исследований, имитационная игра, оформление истории болезни с использованием монографической литературы и др. формы)

Кинетика ферментативных реакций рассматривается в работах Ментен и Михаэлиса. Подробно ученые описали данный вопрос в уравнении фермент-субстратного комплекса.

Определение

Особенности кинетики ферментативных реакций рассматриваются в науке о ферментах, которая изучает зависимость скорости такого процесса от химических особенностей субстрата, среды, инородных факторов, воздействующих на ход химической реакции.

При существенной концентрации субстрата, она не будет оказывать влияния на скорость процесса.

Специфика протекания

Анализ активности ферментов осуществляется при значительных концентрациях субстратов (нулевом порядке химического процесса). В подобных условиях на изменение скорости процесса будет влиять лишь количество фермента.

Кинетика ферментативных реакций в живых клетках имеет некоторые отличительные характеристики. Ферменты в них применяют не во всю силу. При избыточном количестве субстрата, что возможно в условиях эксперимента, скорость реакции будет пропорциональная количеству фермента. При существенном увеличении этого показателя, наблюдается нарушение подобной пропорциональности.

Действие модуляторов на ферменты

Кинетика ферментативных реакций объясняет линейное возрастание скорости процесса с повышением содержания субстрата. При чрезмерном росте его концентрации наблюдается уменьшение субстрата, снижается быстрота протекания химического процесса.

Кинетика ферментативных реакций подтверждает зависимость активности ферментов от рН среды, специфики фермента, его количества. Вещества, которые влияют на ход подобной реакции, именуют модуляторами либо эффекторами. Их принято подразделять на ингибиторы и активаторы, способствующие замедлению либо ускорению определенного процесса.

Основы кинетики ферментативных реакций дают возможность в полной мере понимать суть воздействия этих веществ. Часть из них считается натуральными регуляторами процесса метаболизма. Есть разные типы модуляторов активности ферментов, которые отличаются друг от друга по механизму воздействия и строению.

Варианты активаторов

Чем характеризуется кинетика ферментативных реакций? Биохимия рассматривает в качестве активаторов желчные кислоты, ионы металлов, анионы. Бывают такие ситуации, когда одно вещество в отношении одного фермента будет выступать активатором, а в ином случае является ингибитором. Специфическими активаторами для выявления ферментов выступают ионы металлов.

Они могут стимулировать процесс присоединения к ферменту субстрата, участвуют в образовании его третичной структуры либо могут выступать в качестве части активного центра.

Какова кинетика ферментативных реакций? Кратко можно отметить, что катионы многих металлов - это обязательные компоненты, необходимые для полноценной работы многих ферментов. Для некоторых из них требуется сразу несколько разных ионов. К примеру, для АТФазы, которая производит транспорт ионов через плазматическую мембрану, требуются ионы магния, натрия, калия.

Металлы могут находиться в составе простетической группы ферментов. К примеру, железо считается важным компонентом каталазы в составе порфириновых соединений. Кобальт есть в составе простетической группы метилмалонилизомеразы и гомоцистеинтрансметилазы, а марганец необходим для активации изоцитратдегидрогеназы. Есть группа ферментов, которая активируется с помощью цАМФ. Подобные ферменты именуются протеинкиназы. Она состоит из двух субъединиц:

  • каталитической, которая содержит активный центр;
  • регуляторная, где располагается центр связывания цАМФ.

Только при взаимодействии регуляторного центра фермента и ц-АМФ, он приобретает активность.

Кинетика ферментативных реакций: константа Михаэлиса, условия протекания, все это подробно рассматривается в физической химии.

Особенности ферментов

Они являются компактными молекулами, имеют относительную молекулярную массу от 104, диаметр от 20А. Ферменты, которые входят в состав глобулярных белков, образуются при определенном соединении пептидными связями 20 аминокислотных остатков.

Внутреннее строение ферментов в биохимии характеризуется четырьмя типами структур:

  • первичная связана с генетическим кодом;
  • вторичная структура характеризует спирализацию цепи;
  • третичная определяет пространственное укладывание спирали полипептидной цепи;
  • четверичная связана с объединением глобул в активный олигомерный фермент.

Специфика процессов с одним субстратом

Кинетика ферментативных реакций уравнения Михаэлиса - Ментен объясняет связь между скоростью и концентрациями субстрата.

В 1903 году Л. Анри допустил, что фермент с субстратом образует некое промежуточное соединение. Если сам фермент считать Е, субстрат S, в таком случае интермедиат будет иметь вид ES.
Л. Михаэлис взял для анализа кинетики данного процесса механизм, который включает в себя две стадии: обратимую, необратимую.

Кинетические уравнения двух этих процессов имеют достаточно сложный вид. Для их решения используют стационарные концентрации. Скорость получения промежуточного соединения описывается законом действующих масс, связывает между собой начальные концентрации субстрата и фермента, текущие показатели, а также концентрации промежуточного вещества и продукта взаимодействия.

Особенности решения

Каковы основные кинетики ферментативных реакций? Таблица, используемая в физической химии, позволяет решать систему уравнений в следующих случаях:

  • при уменьшении концентрации исходных веществ;
  • при превышении количества продукта в сравнении с промежуточным комплексом.

Для ферментативных процессов выполняется соотношение скоростей, при котором вторая константа существенно превышает величину первой. Причина в неустойчивости промежуточного соединения, его несущественной концентрации.

По решению ИЮПАК константа, позволяющая описывать кинетику химического процесса, была названа константой Михаэлиса.

Экспериментальным путем была подтверждена линейная зависимость начальной скорости от концентрации субстрата.

Физический смысл константы Михаэлиса

Для того чтобы ответить на этот вопрос, принимают концентрацию субстрата, при которой фермент проявляет половину своей активности. Константа Михаэлиса имеет такую же размерность, что и первоначальная концентрация субстрата: моль\л.

Численные параметры данной постоянной величины располагаются в пределах 10 -2-10-8 М. В ходе экспериментальных исследований было установлено, что константа Михаэлиса является функцией температуры. Она зависит от наличия иных веществ, которые выполняют в процессе роль активатора либо ингибитора.

Частный случай

Если в ходе процесса достигается состояние, при котором наблюдается равенство констант, в системе устанавливается равновесие. Это дает возможность применять в ходе анализа ферментативных процессов приближение квазиравновесных концентраций.

В итоге существенно упрощается выражение для константы Михаэлиса, она характеризует сродство фермента к используемому субстрату.

Ингибирование ферментативных процессов

В качестве таких веществ выступают реактивы, которые при введении их в реакционную систему, существенно уменьшают скорость взаимодействия. Для ферментативного катализа требуется предварительна адсорбция субстрата, его четкое ориентирование относительно активных групп каталитического центра, а для ингибирования можно ограничиться только обычного связывания ингибитора с некоторыми фрагментами адсорбционного участка.

Проявлять свойства ингибиторов соединения могут из-за образования прочных комплексов (цианиды), а также при действии на карбонильную группу с денатурацией белков.

Типы ингибирования

Эффект замедления химического взаимодействия наблюдается по нескольким причинам:

  • Ингибитор конкурирует за активный центр с субстратом, создавая с ферментом неактивный центр. В случае роста концентрации субстрата, восстанавливается активность в растворе самого фермента.
  • Ингибитор присоединяется к иной части молекулы белка, формируя при этом неактивный комплекс. Фермент восстанавливает свою первоначальную активность под воздействием иных веществ, не затрагивая субстрата.

Скорость процесса связана со скоростью формирования конечного продукта через концентрации, константу Михаэлиса. Последнюю величину можно определять графически, а также выражать математическим путем из формулы. При неактивном комплексе ингибитор не мешает реакции между ферментом и субстратом, но существенно снижает скорость процесса.

При статистической обработке экспериментальных данных удалось для неконкурентного ингибирования выявить основные параметры, доказать связь между величиной скорости и показателями концентраций.

Кинетика химических процессов предполагает описание особенностей всех стадий используя постоянные величины, уравнение Михаэлиса-Ментен. В ходе экспериментальных исследований была выявлена зависимость между скоростью ферментативного процесса и изменением концентрации продукта взаимодействия или исходного субстрата.

Кроме того, установлена связь скорости с природой фермента. Именно от его особенностей напрямую зависит активность, особенности поведения в ходе взаимодействия. Мерой активности фермента считается одна стандартная единиц, характеризующая количество фермента, катализирующее превращение к мкмоль исходного субстрата за минуту.

Ферменты широко применяются в современной медицине, от их активности напрямую зависит быстрота определения проблемы, а также качество постановки медицинского диагноза пациенту.

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

Рис. 1.

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k" - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата , неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3.

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4.

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К" - константа ассоциации; n - число субстрат связывающих центров.

Лекция №6

Основы ферментативного катализа.

Краткая история изучения кинетики ферментативных реакций. Зависимость скорости ферментативной реакции от температуры, рН, концентрации фермента и концентрации субстрата. Вывод уравнения Михаэлиса-Ментен. Ферментативная активность. Каталитическая константа - число оборотов фермента. Максимальная скорость ферментативной реакции (V max). Константа диссоциации фермент-субстратного комплекса (K s). Константа Михаэлиса-Ментен (K m).

Краткая история изучения кинетики ферментативных реакций.

Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям.

Самая ранняя попытка математически описать ферментативные реакции была предпринята Дюкло в 1898 г. Браун (1902) и независимо от него Анри (1903) впервые выдвинули гипотезу об образовании в ходе реакции фермент-субстратного комплекса. Это предположение основывалось на трех экспериментальных фактах:

1. папаин образовывает нерастворимое соединение с фибрином (Вюрц, 1880);

2. сахароза защищает фермент инвертазы от тепловой денатурации (О`Салливан и Томпсон, 1890);

3. Фишер в 1898-1899 показал, что ферменты являются стереохимически специфическими катализаторами.

МИХАЭЛИС (Michaelis), Леонор

Леонор Михаэлис – немецкий биохимик и химик-органик, основатель кинетики ферментативных процессов. Основные работы посвящены изучению ферментативных реакций. В 1913 г. ввёл константу (константа Михаэлиса) в уравнение зависимости скорости ферментативной реакции от концентрации субстрата в стационарном состоянии (уравнение Михаэлиса – Ментен).

Зависимость скорости ферментативной реакции от температуры, рН, концентрации фермента и концентрации субстрата.

Предварительные эксперименты по изучению кинетики ферментативных реакций показали, что скорость реакции E + S E + P, вопреки теоретическим ожиданиям, не зависит от концентрации фермента и субстрата так, как в случае обычной реакции второго порядка.

В тоже время к ферментам применимы три основных критерия, характерных и для неорганических катализаторов, а именно:

1. Они остаются неизмененными после реакции, т.е. освобождаясь, могут вновь реагировать с новыми молекулами субстрата (хотя нельзя исключить побочных влияний условий среды на активность фермента).

2. Ферменты способны оказывать действие в ничтожно малых концентрациях (например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 10 6 молекул казеиногена молока за 10 мин при температуре 37°С). Наличие либо отсутствие фермента или любого другого катализатора не оказывает влияния на величину константы равновесия и свободной энергии (ΔG).

3. Катализаторы лишь повышают скорость, с которой система приближается к термодинамическому равновесию, не сдвигая точки равновесия.

На активность фермента оказывают влияние все те факторы, которые могут вызвать изменение его структуры, а именно, к числу таких факторов относятся:

3. Силы, действующие в текучих средах (гидродинамические силы, гидростатическое давление и поверхностное натяжение)

4. Химические агенты (спирт, мочевина или пероксид водорода и др.)

5. Облучение (свет, звук, ионизирующая радиация)

6. Различные химические соединения, которые связываясь с ферментами, могут изменять скорость катализируемых ферментами реакций.

Иногда снижение каталитической активности, вызванное, например изменением рН, обратимо. В таких случаях возврат к первоначальным условиям сопровождается восстановлением активности фермента. Возможно и необратимое изменение активности фермента.

Рассмотрим влияние различных факторов на скорость ферментативной реакции.

Влияние температуры

Одним из основных уравнений химической кинетики является уравнение Аррениуса, выражающее зависимость константы скорости реакции от температуры:

Однако, температурный диапазон ферментативных реакций, для которого применимо уравнение Аррениуса, очень узок для большинства ферментов. Что же произойдет, если мы попытаемся заставить фермент катализировать процесс еще быстрее, подняв температуру выше физиологически допустимой? При высокой температуре, когда начинает доминировать процесс термической инактивации фермента, нарушается зависимость скорости реакции от температуры, описываемая уравнением Аррениуса – а именно, после определенного температурного максимума скорость реакции быстро падает дот нуля. С другой стороны при снижении температуры ниже 0°С скорость реакции также падает до нуля, т.е. реакция полностью прекращается. Таким образом ферментативные реакции имеют колоколообразную зависимость скорости реакции от температуры, что объясняется наложением двух эффектов - возрастанием скорости реакции при увеличении температуры и ускорением тепловой денатурации белковой молекулы, приводящей к инактивации фермента при высоких температурах. Денатурация большинства белков начинается в диапазоне температур от 45 до 50°С и завершается очень быстро при 55°С. Прекращение ферментативных реакции при низких температурах обусловлено тем, что водные растворы замерзают.

Таким образом, термолабильность, или чувствительность к повышению температуры, является одним из характерных свойств ферментов, резко отличающих их от неорганических катализаторов. При температуре 90°С почти все ферменты утрачивают свою активность (исключение составляет только два фермента – миокиназа, которая выдерживает нагревание до 100°С, ДНК-полимераза из термофильных бактерий макс. при 90°С). Оптимальной для действия большинства ферментов теплокровных животных является температура 40-45°С; в этих условиях скорость реакции оказывается максимальной вследствие увеличения кинетической энергии реагирующих молекул. При низких температурах (4°С и ниже) ферменты, как правило, не разрушаются, хотя активность их падает почти до нуля. Это явление обусловлено изменением строения активного центра фермента вследствие уменьшения плотности воды. Во всех случаях имеет значение время воздействия соответствующей температуры. В настоящее время для пепсина, трипсина и ряда других ферментов доказано существование прямой зависимости между скоростью инактивации фермента и степенью денатурации белка. Таким образом, влияние температуры на скорость ферментативной реакции подчиняется уравнению Аррениуса лишь в сравнитель узком диапазоне температур 4-45°С. Вне этого диапазана скорости ферментативных реакций резко снижаются, что учитывается и используется в пищевых технологиях и при хранении пищевых продуктов и лекарственных средств, содержащих ферменты. Привести примеры.

Влияние рН среды.

Ферменты, как и все белки, состоят из аминокислот. В зависимости от рН радикалы некоторых аминокислот, а значит, и белок в целом могут приобретать заряд. Заряженные группы часто входят в состав активных центров ферментов, так как в основе целого ряда механизмов ферментативного катализа лежит катализ кислотного или основного типа. Необходимым условием для осуществления кислотного или основного катализа может быть наличие определенного заряда на ионизируемых группах активного центра. Отсюда следует, что каталитически активная форма фермента существует только в одном строго определенном состоянии ионизации, и в зависимости от рН в нее может превращаться большая или меньшая часть всего имеющегося в смеси фермента.

Зависимость активности фермента от рН имеет колоколообразную форму с довольно узким максимумом. Для разных ферментов значение рН, при котором фермент имеет максимальную активность различно. В эксперименте достаточно часто используется исследование рН-зависимостей ферментативных реакций для изучения числа и свойств ионогенных групп.

При определении зависимости активности фермента от концентрации водородных ионов реакцию проводят при разных значениях рН среды, обычно при оптимальной температуре и наличии достаточно высоких (насыщающих) концентраций субстрата. На рисунке и в таблице приводятся оптимальные значения рН среды для ряда ферментов.

Рис. Зависимость активности ферментов от рН.



Из данных табл. 4.3 видно, что рН-оптимум действия ферментов лежит в пределах физиологических значений. Исключение составляют пепсин, рН-оптимум которого 2,0 (при рН 6,0 он не активен и не стабилен). Объясняется это, во-первых, структурной организацией молекулы фермента и, во-вторых, тем, что пепсин является компонентом желудочного сока, содержащего свободную соляную кислоту, которая создает оптимальную кислую среду для действия этого фермента. С другой стороны, рН-оптимум аргиназы лежит в сильнощелочной зоне (около 10,0); такой среды нет в клетках печени, следовательно, in vivo аргиназа функционирует, по-видимому, не в своей оптимальной зоне рН среды.

Согласно современным представлениям, влияние изменений рН среды на молекулу фермента заключается в воздействии на состояние и степень ионизации кислотных и основных групп (в частности, СООН-группы дикарбоновых аминокислот, SH-группы цистеина, имидазольного азота гистидина, NH 2 -группы лизина и др.). При резких сдвигах от оптимума рН среды ферменты могут подвергаться конформационным изменениям, приводящим к потере активности вследствие денатурации или изменения заряда молекулы фермента. При разных значениях рН среды активный центр может находиться в частично ионизированной или неионизированной форме, что сказывается на третичной структуре белка и соответственно на формировании активного фермент-субстратного комплекса. Имеет значение, кроме того, состояние ионизации субстратов и кофакторов.


Похожая информация.


 

Возможно, будет полезно почитать: