Каково значение ядрышек. Функции ядрышка в клетке каковы? Ядрышко: строение и функции


Ядро обеспечивает важнейшие метаболические и генетические функции клетки. Большинство клеток содержит одно ядро, изредка встречаются многоядерные клетки (некоторые грибы, простейшие, водоросли, поперечно-полосатые мышечные волокна и др.). Лишенная ядра клетка быстро погибает. Однако некоторые клетки в зрелом (дифференцированном) состоянии утрачивают ядро. Такие клетки либо живут недолго и заменяются новыми (например, эритроциты), либо поддерживают свою жизнедеятельность за счет притока метаболитов из тесно примыкающих к ним клеток – "кормилец" (например, клетки флоэмы у растений). По форме ядро может быть шаровидным, овальным, лопастным, линзовидным и т.д. Размер, форма и структура ядер изменяются в зависимости от функционального состояния клеток, быстро реагируя на изменение внешних условий. Ядро обычно перемещается по клетке пассивно с током окружающей его цитоплазмы, но иногда оно способно самостоятельно передвигаться, совершая движения амебоидного типа.

Ядро – самая крупная органелла клетки, ее важнейший регулирующий центр. Как правило, клетка имеет одно ядро, но существуют клетки двухядерные и многоядерные. В некоторых организмах могут встречаться клетки, лишенные ядер. К таким безъядерным клеткам относятся, например, эритроциты млекопитающих, тромбоциты, клетки ситовидных трубок растений и некоторые другие типы клеток. Обычно безъядерными бывают высокоспециализированные клетки, утратившие ядра на ранних стадиях развития.

Ядро содержит ядрышко, а иногда и несколько ядрышек. Ядрышко – компактная структура в ядре интерфазных клеток.

Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом. Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.
Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

первые ядрышки были обнаружены Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Они обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

В клеточном цикле ядрышко присутствует в течение всей интерфазы, в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает и отсутствует в мета- и анафазе, вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

Долгое время функциональное значение ядрышка было непонятно. Вплоть до 1950-х годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

Еще в 1930-х годах рядом исследователей (МакКлинток, Хейтц, С.Г. Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее, в 1940-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям вследствие кислой природы РНК. По данным цитохимических и биохимических исследований, основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухой массы. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

Уже в 1950-х годах при изучении ультраструктуры ядрышек в их составе были выявлены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы - с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта - «ядрышковый организатор» является вместилищем генов рибосомных РНК.

В ядрышке различают:

фибриллярный центр – слабоокрашенный компонент (ДНК, кодирующая РНК),

фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК; состоит из тонких (5 нм) рибонуклеопотеиновых фибрилл и транскрипционно активных участков ДНК;

гранулярный компонент – содержит зрелые предшественники рибосомных СЕ, имеющих диаметр 15 нм.

Основные функции ядрышка – синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.

Транскрипция рРНК происходит в хромосомах 13, 14, 15, 21 и 22. Петли ДНК этих хромосом, содержащие соответствующие гены, формируют ядрышковый организатор, получивший название в связи с тем, что восстановление ядрышка в фазу G 1 клеточного цикла начинается с этой структуры.



При световой микроскопии ядрышки в клетках с высоким уровнем белкового синтеза имеют довольно большие размеры и их легко рассмотреть.

Если же ядрышки мелкие и в ядре преобладает гетерохроматин, то их поиск значительно затруднен. Ядрышко - это своеобразный центр ядра, его «штаб», где собираются рибосомы и, таким образом, контролируется степень последующих процессов трансляции белков в клетке.

В ядре может быть от одного до нескольких ядрышек, но если ядрышек одно или два, то они более крупные. Они могут иметь различные размеры, форму, плотность и область распределения в зависимости от функциональной активности клетки. Более крупные ядрышки характерны для дифференцированных клеток с высокой активностью синтеза белков. Малодифференцированные клетки обычно имеют несколько мелких ядрышек. Клетки, в которых активность белкового синтеза невелика, имеют мелкие ядрышки с высокой электронной плотностью и интенсивно окрашивающиеся основными красителями.

Основная функция ядрышка - синтез рРНК и субъединиц рибосом. При исследовании ультратонких срезов в электронном микроскопе видно, что ядрышки не гомогенные структуры, а имеют вид элекронно-плотного вещества, формирующего петли. Промежутки между петлями заполнены более светлым веществом. С помощью электронной микроскопии в ядрышке можно выявить несколько компонентов.

Фибриллярный компонент - это тонкофибриллярная структура, состоящая из тончайших нитей различной электронной плотности. Она образована участками слабо конденсированной ДНК, считывающимися с нее молекулами РНК и белками, осуществляющими транскрипцию. Фибриллярный компонент занимает центральные, небольшие по размерам участки вокруг ядрышковых организаторов. В фибриллярном компоненте ядрышка происходит транскрипция рРНК.

Гранулярный (зернистый) компонент - это образующиеся субъединицы рибосом. При большом увеличении электронного микроскопа в гранулярном компоненте видно множество гранул высокой электронной плотности. Располагается между фибриллярными структурами и по периферии ядрышка.

Зону ядрышкового организатора иногда выявляют в центре фибриллярного компонента в виде светлого участка. Вокруг ядрышкового организатора в интерфазу образуется ядрышко. В период митоза зона ядрышкового организатора соответствует области вторичной перетяжки хромосомы.

Зона неактивной ДНК вокруг ядрышка отличается высокой степенью конденсации в виде околоядрышкового гетерохроматина. Предположительно эти зоны являются частями хромосом, которые образуют ядрышко.

Ядрышки значительно изменяются в различные стадии митоза. В конце профазы митоза они исчезают, а находящийся в ядрышках хроматин начинает конденсироваться. С конца профазы до середины телофазы митоза ядрышко содержит в себе только хроматин ядрышкового организатора, что указывает на его низкую активность. Затем этот хроматин деконденсируется и вокруг него формируется плотный фибриллярный материал, содержащий скопление рРНК. Рост ядрышка продолжается до конца телофазы за счет увеличения содержания фибриллярных структур, а затем вокруг них формируется гранулярный компонент. К концу телофазы строение ядрышка близко к таковому в интерфазном ядре, и проявляются признаки нарастающей синтетической активности с образованием новых рибосом.

Биология 5,6,7,8,9,10,11 класс, ЕГЭ, ГИА

Распечатать

Ядро - это важный структурный компонент эукариотической клетки , который содержит молекулы ДНК - генетическую информацию. Имеет округлую или овальную форму. Ядро хранит, передает и реализует наследственную информацию, а также обеспечивает синтез белка. Подробнее о клеточной организации , составе и функциях ядра животной или растительной клетки рассмотрим в таблице ниже.

Компонент ядра

Выполняемая функция

Ядерная оболочка . Имеет пористую двухмембранную структуру.

  1. Разграничивает ядро от остальных органоидов и цитоплазмы.
  2. Обеспечивает взаимодействие ядра с цитоплазмой .

Хромосомы . Плотные продолговатые или нитевидные образования, которые можно рассмотреть только при делении клетки .

Ядрышки . Имеют сферическую или неправильную форму.

Участвуют в процессе синтеза РНК , входящей в состав рибосомы .

Ядерный сок (кариоплазма ). Полужидкая среда, находящаяся внутри ядра.

Вещество, в котором содержатся ядрышки и хромосомы.

Несмотря на различия в строении и функциях, все части клетки постоянно взаимодействуют друг с другом, их объединяет одна главная функция - обеспечение жизнедеятельности клетки, своевременное деление клетки и правильный обмен веществ внутри нее.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток.

Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды - нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина).

ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами .

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы.

Плотно спирализованные части хромосом называются гетерохроматином . Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин - более деспирализованная часть хромосом.

На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки - готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой , состоящей из двух мембран (внешней и внутренней).

Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС).

Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры .

Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры - это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько).

Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой) .

Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, - это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

Хроматин;

Ядрышко;

Кариоплазма;

Кариолемма.

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название.

Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

Эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

Гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы.

После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

Дезоксирибонуклеиновой кислоты (ДНК) 40 %;

Белков около 60 %;

Рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

Щелочными или гистоновыми белками 80-85 %;

Кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии.

На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине.

В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина.

В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены.

Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК.

В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Микроскопически в ядрышке различают:

Фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

Гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает.

По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов.

Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма (нуклеолемма) — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм.

В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым.

Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда.

От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.

Гетерохроматин - участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. ГЕТЕРОХРОМАТИН

(от гетеро… и хроматин), участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла. Интенсивно окрашиваются ядерными красителями и хорошо видны в световой микроскоп даже во время интерфазы.

Гетерохроматич. р-ны хромосом, как правило, реплицируются позже эухроматиновых и не транскрибируются, т. е. генетически весьма инертны. Ядра активных тканей и эмбриональных клеток большей частью бывают бедны Г. Различают факультативный и конститутивный (структурный) Г. Факультативный Г. присутствует только в одной из гомологичных хромосом. Пример Г. такого типа - вторая Х-хромосома у жен.особей млекопитающих, к-рая в ходе раннего эмбриогенеза инактивируется вследствие её необратимой конденсации.

Структурный Г. содержится в обеих гомологичных хромосомах, локализован преим. в экспонированных участках хромосомы - в центромере, теломере, ядрышко-вом организаторе (во время интерфазы он располагается неподалёку от ядерной оболочки), обеднён генами, обогащен сателлитной ДНК и может инактивиро-вать расположенные по соседству гены (т.

н. эффект положения). Этот тип Г. очень вариабелен как в пределах одного вида, так и в пределах близких видов. Он может влиять на синапсис хромосом, частоту индуцированных разрывов и рекомбинацию. Участкам структурного Г. свойственна адгезия (слипание) сестринских хроматид.

ЭУХРОМАТИН

(от греч. eu - хорошо, полностью и хроматин), участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре (в интерфазе) и спирализующиеся при делении клеток (в профазе); содержат большинство генов и потенциально способны к транскрипции.

Э. отличается от гетерохроматина меньшим содержанием метилированных оснований и блоков повторяющихся последовательностей ДНК, большим количеством негистоновых белков и ацетилированных молекул гистонов, менее плотной упаковкой хромосомного материала, что, как полагают, особенно важно для активности Э. и делает его потенциально более доступным для ферментов, обеспечивающих транскрипцию.

Э. может приобретать свойства факультативного гетерохроматина - инактивироваться, что является одним из способов регуляции генной активности.

Дата публикования: 2015-02-18; Прочитано: 229 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Строение и функции клеточного ядра.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки.

(в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

1)ядерная оболочка;

2)кариоплазма;

3)ядрышко;

4)хроматин или хромосомы.

Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками).

Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс - всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) - жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью.

Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом).

С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины.

Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней.

Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек . Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом.

Здесь происходит синтез рРНК (рибосомальной РНК).

Ядро клетки - центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты - это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны - внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:

  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин - важнейшее вещество, входящее в ядро клетки. Функции его - это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин - это совокупность хромосом.

Эухроматин - это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы - это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы - 78, у ежа - 96, а у березы - 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген

Гены - это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола - это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках - их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) - это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.

Структурные типы ядрышек

  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром - фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек - это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, - это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.

Один из самых важных органоидов - ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.

Клетка является элементарной единицей живых организмов на Земле и имеет сложную химическую организацию структур, называемых органеллами. К ним относится ядрышко, строение и функции которого мы изучим в данной статье.

Особенности эукариотических ядер

Ядросодержащие клетки в своем составе содержат немембранные органеллы округлой формы, более плотные, чем кариоплазма, и называемые ядрышками или нуклеолами. Они были обнаружены ещё в 19 веке. Сейчас нуклеолы достаточно полно изучены благодаря электронной микроскопии. Практически до 50-х годов 20 века функции ядрышек не были определены, и ученые рассматривали эту органеллу, скорее, как резервуар запасных веществ, используемых во время митоза.

Современными исследованиями установлено, что органоид включает в себя гранулы нуклеопротеидной природы. Более того, биохимические опыты подтвердили, что органелла содержит большое количество белков. Именно они и обуславливают её высокую плотность. Кроме протеидов, в составе ядрышек присутствует РНК и небольшое количество ДНК.

Клеточный цикл

Интересно, что в жизни клетки, которая состоит из периода покоя (интерфазы) и деления (мейоза - у половых, митоза - у ядрышки сохраняются непостоянно. Так, в интерфазе ядро с ядрышком, функции которых - сохранение генома и образование белоксинтезирующих органелл, присутствуют обязательно. В начале клеточного деления, а именно в профазе, они исчезают и заново образуются лишь в конце телофазы, сохраняясь в клетке до следующего деления или до апоптоза - её гибели.

Ядрышковый организатор

В 30-х годах прошлого века учеными было установлено, что образование ядрышек контролируется определенными участками некоторых хромосом. Они содержат гены, хранящие информацию о том, какое строение и каковы функции ядрышка в клетке. Существует корреляция между количеством ядрышковых организаторов и самих органелл. Например, содержит в своем кариотипе две ядрышкообразующие хромосомы и, соответственно, в ядрах её соматических клеток находится две нуклеолы.

Так как функции ядрышка, а также его наличие тесно связаны с и образованием рибосом, сами органеллы отсутствуют в высокоспециализированных тканях головного мозга, крови, а также в бластомерах дробящейся зиготы.

Амплификация нуклеол

В синтетической стадии интерфазы наряду с самоудвоением ДНК происходит избыточная репликация числа генов рРНК. Так как основные функции ядрышка - продуцирование рибосом, то в связи со сверхсинтезом локусов ДНК, несущих информацию о РНК, резко возрастает количество этих органелл. Нуклеопротеиды, не связанные с хромосомами, начинают функционировать автономно. Как результат - в ядре образуется множество нуклеол, дистанцирующихся от ядрышкообразующих хромосом. Это явление называется амплификацией генов рРНК. Продолжая изучать функции ядрышка в клетке, отметим, что наиболее активный их синтез происходит в профазе редукционного деления мейоза, вследствие чего овоциты первого порядка могут содержать несколько сотен ядрышек.

Биологическое значение этого явления становится понятным, если учесть, что на ранних этапах эмбриогенеза: дроблении и бластуляции, необходимо огромное количество рибосом, синтезирующих главный строительный материал - белок. Амплификация - достаточно распространенный процесс, он происходит в овогенезе растений, насекомых, земноводных, дрожжей, а также у некоторых протист.

Гистохимический состав органеллы

Продолжим изучение и их структур, и рассмотрим ядрышко, строение и функции которого взаимосвязаны. Установлено, что оно содержит три вида элементов:

  1. Нуклеонемы (нитевидные образования). Они неоднородны и содержат фибриллы и глыбки. Входя в состав как растительных, так и нуклеонемы образуют фибриллярные центры. Цитохимическое строение и функции ядрышка зависят также от присутствия в нем матрикса - сети опорных белковых молекул третичной структуры.
  2. Вакуоли (светлые участки).
  3. Зернистые гранулы (нуклеолины).

С точки зрения химического анализа, этот органоид почти полностью состоит из РНК и белка, а ДНК находится только на его периферии, образуя кольцеобразную структуру - околоядрышковый хроматин.

Итак, мы установили, что в состав ядрышка входят пять образований: фибриллярный и гранулярный центры, хроматин, белковый ретикулум и плотный фибриллярный компонент.

Виды ядрышек

Биохимическое строение этих органоидов зависит от в которых они присутствуют, а также от особенностей их метаболизма. Различают 5 основных структурных типов нуклеол. Первый - ретикулярный, наиболее распространен и характеризуется изобилием плотного фибриллярного материала, глыбок нуклеопротеидов и нуклеонем. Процесс переписывания информации с ядрышковых организаторов происходит очень активно, поэтому фибриллярные центры плохо видны в поле зрения микроскопа.

Так как главные функции ядрышка в клетке - синтез рибосомных субъединиц, из которых образуются белоксинтезирующие органеллы, то ретикулярный тип организации присущ как растительным, так и животным клеткам. Кольцевидный тип ядрышек встречается в клетках соединительной ткани: лимфоцитах и эндотелиоцитах, у которых гены рРНК практически не транскрибируются. Остаточные ядрышки встречаются в клетках, полностью утративших способность к транскрипции, например, у нормобластов и энтероцитов.

Сегрегированный вид присущ клеткам, испытавшим интоксикацию канцерогенами, антибиотиками. И, наконец, компактный тип ядрышка характеризуется множеством фибриллярных центров и небольшим количеством нуклеонем.

Белковый ядрышковый матрикс

Продолжим изучение внутреннего строения структур ядра и определим, каковы функции ядрышка в метаболизме клетки. Известно, что около 60% сухой массы этого органоида приходится на белки, входящие в состав хроматина, рибосомных частиц, а также на собственно ядрышковые белки. Остановимся на них подробнее. Часть протеидов задействована в процессинге - формировании зрелых рибосомных РНК. К ним относятся РНК-полимераза 1 и нуклеаза, которые удаляют лишние триплеты с концов молекулы рРНК. Белок фибрилларин находится в плотном фибриллярном компоненте и, так же, как и нуклеаза, осуществляет процессинг. Еще один белок - нуклеолин. Вместе с фибрилларином он находится в ПФК и ФЦ ядрышек и в ядрышковых организаторах хромосом профазы митоза.

Такой полипептид, как нуклеофозин располагается в гранулярной зоне и плотном фибриллярном компоненте, он участвует в формировании рибосом из 40 S и 60 S субъединиц.

Какую функцию выполняет ядрышко

Синтез рибосомной РНК - главное задание, которое должна выполнить нуклеола. В это время на её поверхности (а именно в фибриллярных центрах) происходит транскрипция при участии фермента РНК-полимеразы. На данном ядрышковом организаторе синтезируются сотни пре-рибосом, называемых рибонуклеопротеидными глобулами. Из них образуются рибосомные субъединицы, которые через покидают кариоплазму и оказываются в цитоплазме клетки. Малая субъединица 40S соединяется с информационной РНК и только после этого к ним прикрепляется большая субъединица 40S. Образуется зрелая рибосома, способная осуществлять трансляцию - синтез клеточных белков.

В данной статье нами было изучено строение и функции ядрышка в растительных и животных клетках.

 

Возможно, будет полезно почитать: